
Numerical Libraries with C or Fortran

Shaohao Chen

Research Computing, IS&T, Boston University

Outline

1. Overview: What? Why? How to?

2. Fast Fourier transform: FFTw

3. Linear algebra libraries: LAPACK/BLAS

4. Intel Math Kernel Library (MKL)

5. Krylov subspace solver: PETSc

6. GNU scientific libraries (GSL)

What you will learn today

• Basic knowledge of numerical libraries.

• How to check available libraries on BU SCC.

• How to use numerical libraries on BU SCC.

• Basic programming with several numerical libraries:

FFTw, LAPACK/BLAS, MKL, PETSc, GSL

1. Overview

What is numerical library?

• What is the definition of a library in computer science?

In computer science, a library is a collection of non-volatile resources used by
computer programs, often to develop software. These may include configuration
data, documentation, help data, message templates, pre-written code and
subroutines, classes, values or type specifications. (from wiki)

• What is numerical library?

Numerical library is collection of functions, subroutines or classes that
implement mathematical or numerical methods for a certain subject. Usually
these functions or routines are common and can be used to build computer
programs for various research fields.

Several widely-used numerical libraries

• Fastest Fourier Transform in the West (FFTW) computes Fourier and related transforms.

Written in C. Fortran interface is available.

• Basic Linear Algebra Subprograms (BLAS) performs basic vector and matrix operations.

Linear Algebra Package (LAPACK) provides linear algebra routines based on BLAS.

Written in Fortran. C interface (CBLAS/LAPACKE) is available.

• Intel Math Kernel Library (MKL) includes optimized LAPACK, BLAS, FFT, Vector Math and Statistics functions.

C/C++ and Fortran interfaces are available.

• Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for
the scalable (parallel) solution of scientific applications modeled by partial differential equations.

Written in C++. Fortran interface is available.

• GNU Scientific Library (GSL) provides a wide range of mathematical routines.

Written in C++. Fortran interface (FGSL) is under development.

• For more: http://en.wikipedia.org/wiki/List_of_numerical_libraries

http://en.wikipedia.org/wiki/List_of_numerical_libraries

Why numerical libraries?

• Many functions or subroutines you need may have already been coded
by others. Not necessary to code every line by yourself.

• Do not reinvent the wheel. Always Check available libraries before start
writing your program.

• Save your time and efforts!

Advantages of using numerical libraries:

• Computing optimizations

• Parallelization

• Portability

• Easy to debug, easy to read

Prerequisites

Compilers: to compile source codes

• Intel: icc, icpc, ifort

• GNU: gcc, g++, gfortran

• PGI: pgcc, pgc++, pgf90

MPI implementations: to enable parallel computation with MPI standard

• mpich

• mvapich2

• openmpi

• impi

Install numerical libs

A typical three-step installation:

• configure : configure machine-dependent environments

• make : compiles source codes based on settings in the makefile

• make install : copy installed libs and binaries to a destination

Other types of installation:

• manually modify Makefile, then make

• cmake : machine-dependent make

Available libraries on BU SCC

• Check BU Research Computing software webpage:

http://sccsvc.bu.edu/software/#/

under the libraries catalog.

• Use module to check libraries on SCC:

module av

module whatis

module list

module show

How to use numerical libs

Step 1: Modify (a little) source code:

• Call functions or subroutines provided by the libs.

• Include necessary head files.

Step 2: Compile and link (see next page):

• Set paths to lib and include directories for numerical libs (use module or set manually).

• Compile your own code and link it to precompiled numerical libs.

• The same compilers should be used for numerical libs and for your own codes.

Step 3: Run the program:

• Set LD_LIBARRY_PATH, if runtime(dynamic) libraries are used.

Compile and link

• Execute module show software_name to get the paths to header files and lib files.

• Compile your own source code:

${compiler} -c -I/path/to/include name.c (or name.f)

• Link to libs and build the binary

Use a lib installed at a specific location (such as /share/pkg on SCC)

${compiler} name.o -L/path/to/lib -l${libname} -o name

Force to use a static lib

${compiler} name.o -L/path/to/lib -static -l${libname} -o name

Static libs

• A static lib is typically named as libname.a

• A static lib (*.a file) is an archive of a bunch of object (*.o) files.

• A program using a static library extracts the code that it uses from the static library and
makes it part of the program.

Advantages compared to shared libs:

• There is no additional run-time loading costs.

• Once built, the final binary has no dependencies on the library.

Disadvantages compared to shared libs:

• Larger size of binary, larger launch time, larger memory usage at run time.

• For any change(up-gradation) in the library, every time you have to recompile all
programs that use it.

Shared(Dynamic) libs

• Shared libs are typically named as libname.so or libname.so.* .

• A program using a shared library only makes reference to the code that it uses in the
shared library.

Advantages compared to static libs:

• Smaller size of binary, less launch time, less memory usage at run time.

• If there is a change (up-gradation) in the library, you may not need to recompile the
main programs.

Disadvantages compared to static libs:

• There is additional run-time loading costs.

• The final binary depends on the library at run time.

Additional settings to use shared libs

• To use static libs, set up environmental valuables for run-time access

For bash: export LD_LIBRARY_PATH=/path/to/lib

Alternatively, use module: module load software_name

For csh/tcsh: setenv LD_LIBRARY_PATH /path/to/lib

Notes:

• The binary can “see” the dynamic libs under ${LD_LIBRARY_PATH}.

• Especially for a parallel job that runs on multi nodes, LD_LIBRARY_PATH should be set
for every node. Set it in the batch script.

2. Fast Fourier Transform in the west: FFTw

Main features:

• Library for computing the discrete Fourier transform (DFT)

• One or more dimensions FFT

• Arbitrary input size

• Both real and complex data

• Even/odd data, i.e. the discrete cosine/sine transforms

• Efficient handling of multiple, strided transforms

• Parallel transforms: parallelized with some flavor of threads (e.g. POSIX) or
OpenMP. MPI version available in FFTW 3.3.

FFTw basics

Data type

• fftw_complex

• fftw_plan

Allocate and deallocate data

• fftw_malloc

• fftw_free

FFT plan and execution

• FFT plan functions (see next pages)

• fftw_execute // execute FFT plan

• fftw_destroy_plan

FFTw plan functions I

One dimensional

• fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out, int sign, unsigned flags);

sign: either FFTW_FORWARD (-1) or FFTW_BACKWARD (+1).

flags: either FFTW_MEASURE or FFTW_ESTIMATE

Multi dimensional

• fftw_plan_dft_2d // two dimensions

• fftw_plan_dft_3d // three dimensions

• fftw_plan_dft // arbitrary dimensions

 Complex DFT:

 Inverse Complex DFT:

FFTw plan functions II

Real DFTs

• fftw_plan_r2r_1d(int n, double *in, double *out, fftw_r2r_kind kind, unsigned flags)

kind: FFTW_REDFT00, FFTW_RODFT00, etc. For different types of even or odd transforms.

• fftw_plan_r2r_2d, fftw_plan_r2r_3d, fftw_plan_r2r

Real input, complex output, always FFTW_FORWARD

• fftw_plan_dft_r2c_1d, fftw_plan_dft_r2c_2d

• fftw_plan_dft_r2c_3d, fftw_plan_dft_r2c

Complex input, real output, always FFTW_BACKWARD

• fftw_plan_dft_c2r_1d, fftw_plan_dft_c2r_2d

• fftw_plan_dft_c2r_3d, fftw_plan_dft_c2r

Exercise 1: Fourier transform with FFTw

 Task: Compute the Fourier transform of a one-dimensional complex
array, and compute the inverse Fourier transform of the output, which
should be the same as the original input data.

Solution for Exercise 1 in C

 Source code: /project/scv/examples/numlibs/fftw/fftw3_prb.c

• Include fftw head file: # include <fftw3.h>

• Call fftw functions: fftw_malloc, fftw_plan_dft_1d, fftw_execute, etc.

 Compile and run

module load fftw/3.3.4 # load fftw by moudle

module show fftw/3.3.4 # show fftw-related environments

gcc -c fftw3_prb.c -I/share/pkg/fftw/3.3.4/install/include # compile

gcc fftw3_prb.o -L/share/pkg/fftw/3.3.4/install/lib -lfftw3 -o fftw3_prb # link

ldd ./fftw3_prb # check whether the binary is linked to fftw runtime libs

./fftw3_prb # run

3. Linear algebra libraries
History:

• LINPACK (LINear algebra PACKage): since 1974

based on level-1 BLAS

• LAPACK (Linear Algebra PACKage): since 1989

based on level-3 BLAS, vectorized and threaded in Intel MKL

• ScaLAPACK (Scalable LAPACK): since 1995

parallel with MPI, for distributed memory systems, only a subset of LAPACK routines

• DPLASMA (Distributed Parallel Linear Algebra Software for Multicore Architectures): 2000’s

parallel for shared memory systems

• MAGMA (Matrix Algebra for GPUs and Multicore Architectures): 2000’s

parallel for GPU

• Matlab: a commercial software developed from LINPACK.

BLAS

• Provides routines for performing basic vector and matrix operations.

• Level 1 BLAS: scalar, vector and vector-vector operations

• Level 2 BLAS: matrix-vector operations

• Level 3 BLAS: matrix-matrix operations

• Contents of compute routines:

 Matrix-matrix, matrix-vector addition and multiplication, etc.

Refer to user guide at http://www.netlib.org/blas/#_documentation

LAPACK
• Provides routines for solving systems of linear equations, linear least-squares

problems, eigenvalue problems, and matrix factorizations.

• Written in Fortran 90.

• Can be seen as the successor to the linear equations and linear least-squares
routines of LINPACK and the eigenvalue routines of EISPACK.

• Contents of compute routines:

 Linear Equations

 Generalized Orthogonal Factorizations

 Singular Value Decomposition

 Linear Least Squares Problems

 Symmetric and Nonsymmetric Eigen Problems

Refer to user guide at http://www.netlib.org/lapack/lug/node37.html

Exercise 2: Matrix product with LAPACK/BLAS

 Task: Compute the real matrix product C=alpha*A*B+beta*C
using LAPACK subroutine DGEMM, where A, B, and C are matrices
and alpha and beta are double precision scalars.

Solution for Exercise 2 in Fortran

 Source code: /project/scv/examples/numlibs/lapack/matprod.f

• Initialize data for matrices A, B, C and real scalars alpha, beta.

• Call LAPACK function: DGEMM

 Compile and run

module show lapack/3.6.0 # show lapack-related environments

gfortran matprod.f -L/share/pkg/lapack/3.6.0/install/lib -llapack -lblas -o matprod # compile and link

./matprod # run

4. Intel MKL

• Optimization for intel processors.

• Accelerates math processing routines that
increase application performance and reduce
development time.

• Includes highly vectorized and threaded
Lapack, FFT, Vector Math and Statistics
functions.

• Xeon-phi enabled.

MKL LAPACK subroutines I
Routine Description

?geev Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a
general matrix.

?gels Uses QR or LQ factorization to solve an overdetermined or underdetermined linear
system with a full rank matrix.

?gelsd Computes the minimum norm solution to a linear least squares problem using the
singular value decomposition of A and a divide and conquer method.

?gesdd Computes the singular value decomposition of a general rectangular matrix using a
divide and conquer algorithm.

?gesv Computes the solution to the system of linear equations with a square matrix A and
multiple right-hand sides.

?gesvd Computes the singular value decomposition of a general rectangular matrix.

?heev Computes all the eigenvalues and, optionally, the eigenvectors of a Hermitian matrix.

?heevd Computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix using a divide and conquer algorithm.

? could be: s – single precision; d – double precision; c – single-precision complex; z – double-precision complex.

https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/nonsymmetric_eigenproblems.htm#geev
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/linear_least_squares_problems.htm#gels
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/linear_least_squares_problems.htm#gelsd
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/singular_driver.htm#gesdd
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/driver_linear.htm#gesv
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/singular_driver.htm#gesvd
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#heev
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#heevd

MKL LAPACK subroutines II

?heevr Computes the selected eigenvalues and, optionally, the eigenvectors of a Hermitian matrix
using the Relatively Robust Representations.

?heevx Computes the selected eigenvalues and, optionally, the eigenvectors of a Hermitian matrix.

?hesv Computes the solution to the system of linear equations with a Hermitian matrix A and
multiple right-hand sides.

?posv Computes the solution to the system of linear equations with a symmetric or Hermitian
positive definite matrix A and multiple right-hand sides.

?syev Computes all the eigenvalues and, optionally, the eigenvectors of a real symmetric matrix.

?syevd Computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric matrix
using a divide and conquer algorithm.

?syevr Computes the selected eigenvalues and, optionally, the eigenvectors of a real symmetric
matrix using the Relatively Robust Representations.

?syevx Computes the selected eigenvalues and, optionally, the eigenvectors of a symmetric matrix.

?sysv Computes the solution to the system of linear equations with a real or complex symmetric
matrix Aand multiple right-hand sides.

https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#heevr
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#heevx
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/driver_linear.htm#hesv
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/driver_linear.htm#posv
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#syev
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#syevd
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#syevr
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/symmetric_eigenproblems.htm#syevx
https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/driver_linear.htm#sysv

Exercise 3: Solve a linear system with MKL subroutines

 Task: Compute the solution to the system of linear equations AX=B with a square
matrix A and multiple right-hand sides B using the MKL routine dgesv.

Solution for Exercise 3 in C

Source code: /project/scv/examples/numlibs/mkl/dgesv_ex.c

• Initialize data for matrices A and B

• Call the MKL LAPACK function: dgesv

 Compile and run

module load intel/2016

icc -mkl dgesv_ex.c -o dgesv_ex

./dgesv

5. PETSc

 PETSc, pronounced PET-see (the S is silent), is a suite of data structures

and routines for the scalable (parallel) solution of scientific applications

modeled by partial differential equations.

 It supports MPI, shared memory pthreads, and GPUs through CUDA or

OpenCL, as well as hybrid MPI-shared memory pthreads or MPI-GPU

parallelism.

 Efficient for sparse-matrix problems

Parallel Numerical Components of PETSc

PETSc Basics I

• PetscInitialize // call MPI_Initialize

• PetscFinalize // call MPI_Finalize

• Data types:

PetscInt, PetscScalar, Vec, Mat

• Create objects:

VecCreate(MPI_Comm comm, Vec *vec)

MatCreate(MPI_Comm comm, Mat *mat)

• Destroy objects

VecDestroy(Vec *vec)

MatDestroy(Mat *mat)

PETSc Basics II

• Set sizes of objects

VecSetSizes(Vec v, PetscInt n, PetscInt N) // local size n, global size N

MatSetSizes(Mat A, PetscInt m, PetscInt n, PetscInt M, PetscInt N) // local size m, n,
global size M, N

• Set values of objects

VecSetValues(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode
mode)

MatSetValues(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt
idxn[], const PetscScalar v[], InsertMode mode) // Set values of a block. Unset blocks
are filled with zero.

mode: either INSERT_VALUES or ADD_VALUES

PETSc Basics III
• Assembly

VecAssemblyBegin(Vec vec)

VecAssemblyEnd(Vec vec)

MatAssemblyBegin(Mat mat, MatAssemblyType type)

MatAssemblyEnd(Mat mat, MatAssemblyType type)

type: either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

Vector and matrix are ready to use only after the assembly functions have been called.

• Vector operations (see next slides)

• Matrix operations (see next slides)

• PETSc documentation: http://www.mcs.anl.gov/petsc/documentation/index.html

PETSc
vector
operations

PETSc matrix operations

PETSc Krylov subspace solver

• KSP: Krylov subspace solver

• PC: preconditioner

Basic KSP functions:

• KSPCreate(MPI_Comm comm, KSP *ksp)

• KSPSetOperators(KSP ksp, Mat Amat, Mat Pmat) // assign the linear system to a KSP solver

• KSPSetType(KSP ksp, KSPType type) // KSP type: see next slides

• KSPGetPC(KSP ksp, PC *pc)

• PCSetType(PC pc, PCType type) // PC type: see next slides

• KSPSetTolerances(KSP ksp, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt maxits)

• KSPSolve(KSP ksp, Vec b, Vec x)

• KSPDestroy(KSP *ksp)

PETSc KSP types

PETSc PC types

Exercise 4: Solve a linear system in parallel with PETSc

 Task: Compute the solution of a sparse-matrix linear system Ax=b, using a KSP solver
(e.g. MINRES).

 Solution: C source code at /project/scv/examples/numlibs/petsc/ex42.c

• Include petsc head file: #include <petscksp.h>

• Call petsc functions: KSPSetOperators, KSPSolve, KSPSetType, etc.

 Compile and run

• module load petsc/3.7.0 # set up PETSc

• make ex42 # compile and link

• mpirun -n 24 ./ex42 -m 2400 # run the job using 24 CPU cores

PETSc-dependent packages

• SLEPc:

Scalable Library for Eigenvalue Problems

• MOOSE:

Multiphysics Object-Oriented Simulation Environment finite element framework,
built on top of libMesh and PETSc

More information:

http://www.mcs.anl.gov/petsc/index.html

http://www.mcs.anl.gov/petsc/publications/index.html

http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/publications/index.html

6. GNU Scientific Lib: GSL

Main features:

• A numerical library for C and C++ programmers

• Provides a wide range of mathematical routines such as random number
generators, special functions and least-squares fitting

• Uses an object-oriented design. Different algorithms can be plugged-in easily
or changed at run-time without recompiling the program.

• It is intended for ordinary scientific users. Anyone who knows some C
programming will be able to start using the library straight-away.

• Serial

Complete GSL subjects

• Mathematical Functions

• Complex Numbers

• Polynomials

• Special Functions

• Vectors and Matrices

• Permutations

• Combinations

• Multisets

• Sorting

• BLAS Support

• Linear Algebra

• Eigensystems

• Chebyshev Approximations

• Series Acceleration

• Wavelet Transforms

• Discrete Hankel Transforms

• One dimensional Root-Finding

• One dimensional Minimization

• Multidimensional Root-Finding

• Multidimensional Minimization

• Least-Squares Fitting

• Nonlinear Least-Squares Fitting

• Basis Splines

• Physical Constants

• Fast Fourier Transforms

• Numerical Integration

• Random Number Generation

• Quasi-Random Sequences

• Random Number Distributions

• Statistics

• Histograms

• N-tuples

• Monte Carlo Integration

• Simulated Annealing

• Ordinary Differential Equations

• Interpolation

• Numerical Differentiation

Exercise 5: Linear fit with GSL

 Task: computes a least squares straight-line fit to a simple dataset,
and outputs the best-fit line and its associated one standard-deviation
error bars.

Solution for Exercise 5 in C

 C source code at /project/scv/examples/numlibs/gsl/linear_fit.c

• Include gsl head file: #include <gsl/gsl_fit.h>

• Call gsl function: gsl_fit_linear_est

 Compile and run

module load gsl/1.16 # set up gsl environmens

module show gsl/1.16 # show gsl environments

g++ -c linear_fit.c -I/share/pkg/gsl/1.16/install/include # compile

g++ linear_fit.o -L/share/pkg/gsl/1.16/install/lib -static -lgsl -o linear_fit # link to static libs

g++ linear_fit.o -L/share/pkg/gsl/1.16/install/lib -lgsl -lgslcblas -o linear_fit # link to dynamic libs

./linear_fit # run

More help?

BU Research Computing tutorial documents

http://www.bu.edu/tech/support/research/training-
consulting/live-tutorials/

Submit jobs on BU SCC

http://www.bu.edu/tech/support/research/system-
usage/running-jobs/submitting-jobs/

Send emails to us for questions

• help@scc.bu.edu

• shaohao@bu.edu

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/submitting-jobs/
mailto:help@scc.bu.edu
mailto:shaohao@bu.edu

