
 General advice about optimization

 A typical workflow for performance optimization

 MATLAB's performance measurement tools

 Common performance issues in MATLAB and how to 
solve them

Tutorial Overview

1Tuning MATLAB for Better Performance



 "The First Rule of Program Optimization: Don't do it. The 
Second Rule of Program Optimization (for experts only!): 
Don't do it yet." –- Micheal A. Jackson, 1988

 "We should forget about small efficiencies, say about 97% 
of the time: premature optimization is the root of all 
evil. Yet we should not pass up our opportunities in that 
critical 3%. A good programmer will not be lulled into 
complacency by such reasoning, he will be wise to look 
carefully at the critical code; but only after that code has 
been identified" --- Donald Knuth, 1974

 ...learn to trust your instruments. If you want to know how 
a program behaves, your best bet is to run it and see 
what happens” --- Carlos Bueno, 2013

General Advice on Performance Optimization
2Tuning MATLAB for Better Performance



create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

3Tuning MATLAB for Better Performance



create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

4Tuning MATLAB for Better Performance

 Design and write the 
program

 Test to make sure that it 
works as designed / 
required

 
 Don't pay “undue” 

attention to performance at 
this stage.



create

measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

5Tuning MATLAB for Better Performance

 Run and time the program

 Be sure to try a typical 
workload, or a range of 
workloads if needed.

  Compare your results with 
you goals/requirements. If 
it is “fast enough”, you are 
done! 



create
measure
while goals not met

profile
modify

test

measure

end while

A typical optimization workflow

6Tuning MATLAB for Better Performance

 Detailed measurement of 
execution time, typically 
line-by-line

 Use these data to identify 
“hotspots” that you should 
focus on



create
measure
while goals not met

profile

modify
test

measure

end while

A typical optimization workflow

7Tuning MATLAB for Better Performance

 Focus on just one 
“hotspot”

 Diagnose and fix the 
problem, if you can



create
measure
while goals not met

profile

modify

test
measure

end while

A typical optimization workflow

8Tuning MATLAB for Better Performance

 You just made some 
changes to a working 
program, make sure you 
did not break it!



create
measure
while goals not met

profile

modify

test

measure
end while

A typical optimization workflow

9Tuning MATLAB for Better Performance

 Run and time the program, 
as before.



create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

10Tuning MATLAB for Better Performance

 Repeat until your 
performance goals are met



 tic and toc
– Simple timer functions (CPU time)

 timeit

– Runs/times repeatedly, better estimate of the mean run time, for 
functions only

 profile

– Detailed analysis of program execution time

– Measures time (CPU or wall) and much more

 MATLAB Editor

– Code Analyzer (Mlint) warns of many common issues

Tools to measure performance

11Tuning MATLAB for Better Performance



 

Example: sliding window image smoothing

12Tuning MATLAB for Better Performance

Original: first view of the earth from the moon, NASA Lunar Orbiter 1, 1966

Input: downsampled, with gaussian noise Output: smoothed with 9x9 window

http://www.nasa.gov/multimedia/imagegallery/image_feature_623.html


 Serial Performance

– Eliminate unnecessary work

– Improve memory use

– Vectorize (eliminate loops)

– Compile (MEX)

 Parallel Performance

– “For-free” in many built-in MATLAB functions

– Explicit parallel programming using the Parallel computing 
toolbox 

Where to Find Performance Gains ?

13Tuning MATLAB for Better Performance



Unnecessary work (1): redundant operations*

for i=1:N
   x = 10;
     .
     .
end

x = 10;
for i=1:N
     .
     . 
end

Code Tuning and Optimization 14

Avoid redundant operations in loops:

bad

good



Unnecessary work (2): reduce overhead

Code Tuning and Optimization 15

for i=1:N
   x(i) = i;
end
for i=1:N
   y(i) = rand();
end

for i=1:N
   x(i) = i;
   y(i) = rand();
end

function myfunc(i)

  % do stuff

end

for i=1:N

   myfunc(i);

end

function myfunc2(N)

   for i=1:N

      % do stuff

   end

end

myfunc2(N);

..from loops

..from function calls

good

good

bad

bad



Unnecessary work (3): logical tests

for i=1:N

   if i == 1

      % i=1 case

   else

      % i>1 case

   end

end

Code Tuning and Optimization 16

% i=1 case

for i=2:N

      % i>1 case

end

Avoid unnecessary logical tests...
...by moving known cases 
out of loops

if (i == 1 | j == 2) & k == 5

% do something

end

...by using short-circuit 
logical operators 

if (i == 1 || j == 2) && k == 5

% do something

end

bad

good

bad

good



Unnecessary work (4): reorganize equations*

c = 4;

for i=1:N

   x(i)=y(i)/c;

   v(i) = x(i) + x(i)^2 + x(i)^3; 

z(i) = log(x(i)) * log(y(i));

end

s = 1/4;

for i=1:N

   x(i) = y(i)*s;

v(i) = x(i)*(1+x(i)*(1+x(i)));

z(i) = log(x(i) + y(i));

end

Code Tuning and Optimization 17

Reorganize equations to use 
fewer or more efficient 
operators

Basic operators have different 
speeds:

  Add        3- 6 cycles
  Multiply   4- 8 cycles
  Divide     32-45 cycles
  Power, etc (worse)

bad

good



Unnecessary work (5): avoid re-interpreting code

Code Tuning and Optimization 18

MATLAB improves performance by interpreting a program only once, unless 
you tell it to forget that work by running “clear all” 

MATLAB a run faster the 2nd time

Functions are typically faster than scripts (not to mention better in all other ways)



Vectorize*

19

Vectorization is the process of making your code work on array-
structured data in parallel, rather than using for-loops.

This can make your code much faster since vectorized operations 
take advantage of low level optimized routines such as LAPACK or 
BLAS, and can often utilize multiple system cores. 

There are many tools and tricks to vectorize your code, a few 
important options are:

● Using built-in operators and functions

● Working on subsets of variables by slicing and indexing

● Expanding variable dimensions to match matrix sizes

Tuning MATLAB for Better Performance



Memory (1): the memory hierarchy

Code Tuning and Optimization 20

To use memory efficiently:

 Minimize disk I/O

 Avoid unnecessary memory access

 Make good use of the cache

Disk



 Arrays are always allocated in 
contiguous address space

 If an array changes size, and 
runs out of contiguous space, it 
must be moved. 

   x = 1;
   for i = 2:4
      x(i) = i;
   end

 This can be very very bad for 
performance when variables 
become large

Memory (2): preallocate arrays 

21

Memory
Address 

Array 
Element

1           x(1)

… . . .

2000 x(1)

2001 x(2)

2002 x(1)

2003 x(2)

2004 x(3)

. . . . . .

10004 x(1)

10005 x(2)

10006 x(3)

10007 x(4)

Tuning MATLAB for Better Performance



 Preallocating array to its maximum size prevents 
intermediate array movement and copying

 A = zeros(n,m); % initialize A to 0 

   A(n,m) = 0;     % or touch largest element
 

 If maximum size is not known apriori, estimate with 
upperbound. Remove unused memory after.

    A=rand(100,100);
    % . . .
    % if final size is 60x40, remove unused portion 
    A(61:end,:)=[]; A(:,41:end)=[];  % delete

Memory (3): preallocate arrays, cont.*

22Tuning MATLAB for Better Performance



Memory (4): cache and data locality

• Cache is much faster than main memory (RAM) 

• Cache hit: required variable is in cache, fast

• Cache miss: required variable not in cache, slower

• Long story short: faster to access contiguous data 

Code Tuning and Optimization 23



Memory (5): cache and data locality, cont.

   

…

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

Main memory

“mini” cache
holds 2 lines, 4 words each

for i = 1:10
     x(i) = i;
end

a
b…

Code Tuning and Optimization 24



Memory (6): cache and data locality, cont.

   

…

x(1)

x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

• ignore i for simplicity

• need x(1), not in cache,  cache miss

• load line from memory into cache

• next 3 loop indices result in cache hits

for i=1:10
    x(i) = i;
end

a
b…

x(1)

x(2)
x(3)

x(4)

Code Tuning and Optimization 25



Memory (7): cache and data locality, cont.

   

…

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

need x(5), not in cache, cache miss

● load line from memory into cache

● free ride next 3 loop indices, cache hits

for i = 1:10
    x(i) = i;
end

a
b…

x(1)
x(2)

x(3)
x(4)

x(5)

x(6)
x(7)
x(8)

Code Tuning and Optimization 26



Memory (8): cache and data locality, cont.

   

…

•  need x(9), not in cache  --> cache 
miss

•  load line from memory into cache

•  no room in cache, replace old line

for i=1:10
    x(i) = i;
end

x(5)

x(6)
x(7)
x(8)

x(9)

x(10)

a
b

Code Tuning and Optimization 27

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)

x(10)

a
b…



 Multidimensional arrays are stored in memory along columns 
(column-major)
 

 Best if inner-most loop is for array left-most index, etc.

Memory (9): for-loop order*

28

n=5000; x = zeros(n);
for i = 1:n       % rows
   for j = 1:n    % columns
     x(i,j) = i+(j-1)*n;
   end
end

n=5000; x = zeros(n);
for j = 1:n       % columns
   for i = 1:n    % rows
     x(i,j) = i+(j-1)*n;
   end
end

Tuning MATLAB for Better Performance

goodbad



 

Memory (10): avoid creating unnecessary variables

29

Avoid time needed to allocate and write data to main memory.

Compute and save array in-place improves performance and 
reduces memory usage

Caveat: May not be work if the data type or size changes – these 
changes can force reallocation or disable JIT acceleration

x = rand(5000);
y = x.^2;

x = rand(5000);
x = x.^2;

Tuning MATLAB for Better Performance

goodbad


