Intermediate Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 05/12/15

Outline
« explore further the data types introduced before.

« introduce more advanced types
* special variables
» multidimensional arrays
« arrays of hashes

« introduce functions and local variables
« dig deeper into regular expressions

« show how to interact with Unix, including how toogess
files and conduct other 1/0 operations

Data Types

scalars revisited

As we saw, scalars consist of either string or remvialues.
and for strings, the usage of " versus ' makeéfereince.

Ex:

$name="Fred";
$wrong_greeting='Hello $name!’;
$right_greeting="Hello $name!";
#

print "$wrong_greeting\n";

print "$right_greeting\n";

yields
Hello $name!
Hello Fred!

If one wishes to include characters ltke% , \,"," (called meta-characters)
in a double quoted string they need to be precedtbda\ to be printed
correctly

EXx:

print "The coffee costs \$1.20 a cup.\n";

which yields

The coffee costs $1.20 a cup.

The rule of thumb for this is that if the charadias some usage in
the language, to print this character literallgase it with a

Sometimes we need to insert variable names in swedy that there
might be some ambiguity in how they get interpreted

Suppose
$x="day" or $x="night"

and we wish to say "It is daytime" or "It is nighte" using this variable.

incorrect correct

$x="day"; $x="day";
print "It is $xtime\n"; print "It is ${x}time\n";

/

This is interpreted as a variable calfedime ‘

‘ putting{ } around the name will inse® properly

arrays revisited

For any array@Xthere is a related scalar variaBkxX which gives
the index of theast definedelement of the array.

Ex:

@X=(3,9,0,6);
print "$#X\n";

yields

Similarly, arrays can be viewed in what is knowrisaalar context'

Ex:

@blah=(5,-3,2,1);
$a = @blah;

Here,$a equals4 which is the curreniength of @blah

(i.e. $#X = @X-1if you want to remember which is which.)

We can print whole arrays as follows.

@X=(4,5,6);
print "@X";

yields

456

Note, if you drop thé then the array still prints, but without the spaces
between each element.

stacks and queues

There are built in functions that can manipulatays in such a way that
any array can be treated as a stack or queue!

Ex:

@X=(2,5,-8,7);

push(@X,10); # now @X=(2,5,-8,7,10);

$a=pop(@X); # now @X=(2,5,-8,7) and $a=10

* pop removes the last elementf an array

« push adds an elemento the end of an array

Likewise,

@X=(2,5,-8,7);
unshift(@X,10); # now @X=(10,2,5,-8,7);

$a=shift(@X); # now @X=(2,5,-8,7) and $a=10

« shift removes the first elemenbf an array

« unshift adds an elemento the beginning of an array

miscellaneous array operations (neat tricks)

If $a and$b are two scalars, thefa,$b) is implicitly an array,
and so the following works.

Given
$a=1; $b=2;
($a,$b)=($b,$a);
print "$a $b\n";
we get

21

(i.e. We can swap two values without needing alttémporary variable!)

Using theforeach() function, one can loop over the elements of aryarra
and_modify each element along the way.

Ex:

@a=(1,2,3),
foreach $element (@a){
$element = $element*4;

}
now @a=(4,8,12)

associative arrays revisited

Last time we introduced theeys() function which returns (as an array)
the keys in a given associative array.

Similarly, there is aalues() function which returns (also as an array)
the values of an associative array.

Ex:

%Grades=("Tom"=>"A","Dick"=>"B","Harry"=>"C");

@People=keys(%Grades);
@People=("Tom","Dick","Harry");

@letters=values(%Grades);
@letters=("A","B","C");

There is also a way of looping ot the key-value pairs in an associative array
using theeach() function.

Ex:
%Grades=("Tom"=>"A","Dick"=>"B","Harry"=>"C"),
while(($person,$grade)=each(%Grades)){
print "$person received a $grade\n";
}
yields:

Tom received a A
Dick received a B
Harry received a C

There is also a function for removing elements faomassociative array.

Ex:

%Appointment=("Monday"=>"1PM",
"Wednesday"=>"10AM",
"Friday"=>"4PM");

Suppose now that our Wednesday appointment is badce
We can then do:

‘ delete($Appointment{"Wednesday"}); |

and nowdbAppointment consists of just two key and value pairs.

Advanced Data Types
special variables

In Perl there are a number of variables (scalarays and hashes) which
have special meanings within Perl, but which yoo use as well.

scalars

$_ default input variable

As we have seen, one can take standard input fierketyboard
(or from a Unix pipe) as follows.

while($line=<STDIN>){
chomp($line);
print "$line\n";

One could rewrite this very compactly as follows

while(<STDIN>){
chomp();
print "$_\n";

Here, the line of input was not explicitly assigned user specified variable,
but rather, Perl assigned it to the special vagigbl instead.

Likewise chomp() operates o8 _ by default!

Actually, one could rewrite this even more compaeasyfollows

while(<>){
chomp();
print "$_\n";
}

as <> is synonymous witkSTDIN>

We can also usg_ for regular expression matching.

Ex:

while($line=<STDIN>){
chomp($line);
if($line =~/blah/)}{
do something

}

can be rewritten as

while(<>)1
chomp();
if(/blah/){
do something
}
}

There arenany other default scalars

EXx:
$0 - name of the Perl script currently running
$] - version of Perl that you are using
$. - number of lines you have currently read in frogiaen file

(e.g.STDIN);

10

Additionally, there are defaudtrrays andassociative arrays

@ARGV program arguments passed to the script you are running

ex: If your script is called 'myscript' and if yowoke it as follows

>myscript Tom Dick Harry

then

$ARGV[0]="Tom"
$ARGV[1]="Dick"
$ARGV[2]="Harry"

An important associative array that Perl keepsktodds %ENV
which contains information about your current eomiment

Ex:
$ENV{HOME} # your home directory
$SENV{LOGNAME} # your login name
$ENV{PWD} # the current directory

An easy way to see all 8EN\s as follows:

#!/usr/bin/perl
foreach $key (keys(%ENV)){

print "$key => SENV{$key}n";
}

11

multidimensional arrays

A multidimensional array can be created and acdessa number
of ways.

As a whole

or, entry by entry

SALO]0]="2’; SATO][L]="D";
SALL[0]="c"; SAIL][1]="d",

One can also create more exotic structures.

associative array of (ordinary) arrays

%Food=(
"fruits" => ["apples","oranges","pears"],
"vegetables” => ["carrots","lettuce"],
"grains" =>["rye","oats","barley"]
);

so the statement
print $Food{"vegetables"}[1];
yields

lettuce

12

associative array of associative arrays (a hasiasties)

%Statelnfo=(
"Massachusetts" => { "Postal Code" => "MA",
"Capital" =>"Boston"

12

"New York" => {"Postal Code" => "NY",
"Capital" => "Albany"
}

$Statelnfo{"New York"H"Postal Code"}="NY";

Note the usage of tHe) and{ } above.

Behind the scenes, all these structures are manesjjegl what are known as
references which we’ll explore the inner detail$hie next tutorial.

With Perl, the syntax is such that you can creatg flexible structures.

Most of the time, what seems reasonable on papealacworks syntactically!

13

Functions

In order to write more modular Perl scripts, onesufsinctions.

The general syntax is

sub function_name {

do something

Invoking the function is done using either

&function_name() offunction_name()

The & before the name is (mostly) optional.

One can put functions anywhere within a scriptiteicustomary
to put them at the end. (the reverse of the cugto@)

14

parameters (by value)

When one passes parameters to a function, theseanrthe function
in the array@_

Ex:

sub converse{
my ($first,$second) = @_;
print "$first spoke to $second\n”;

}

converse("Holmes","Watson");

yields

Holmes spoke to Watson

The individual elements @@ _are accessible & [0] ,$ [1] , ... etc.

So we could have also written this as

sub converse{
my $first =$_[0];
my $second = $_[1];
print "$first talked to $second\n®;

}

The my directive is used to make the variab$fisst and$second
local to the subroutine. (what's known as lexicalpéaeg)

That is, it is defineanly for the duration of the given code block between{ and}
which is usually the body of the function anyway.

With this, one can have the same variable namsgsj in various functions
without any potential conflicts.

15

Another option for obtaining the parameters passedfunction
is to use theshift function we saw earlier.

sub converse{
my $first = shift;
my $second = shift;
print "$first talked to $second\n®;

Recall thashift(@X) extracts the leftmost element @>and removes
it from @Xand that subsequent calls remove the remainingesiesnof@ X
in the same fashion.

Here, callingshift ~ with no arguments implies that we wish to extraet t
elements of@_.

parameters (by reference)

One may pass to a subrederenceto a given variable, and thereby allow the
sub to modify the underlying variable.

Ex: sub myfunction{ Here we modify the value of
my $x=shift: the underlying variable by
Y o L dereferencing it with the extna
} $$x=$$x+10; “—leading $.
$a=3;
myfunction(\$a); +— Here we pass &ference
print "$a\n"; to $a which allows the
sub to modify$a itself.
yields
13

16

return values

To receive values from a function, one can usedg¢han command.

EX:

sub add_array{
my @numbers=@_;
my $sum=0;
my $n;
foreach $n (@numbers){
$sum += $n;
}

return $sum;

}

$s = add_array(3,5,10,6,-1);

or by invoking the return value by itself on thetline of the function.

Ex:

sub add_array{
my @numbers=@_;
my $sum=0; # local variable
foreach $n (@numbers){
$sum += $n;
}

$sum;

Note, one can return scalars, arrays or associatiags from a function.

17

Regular Expressions

Recall that to match a variable against a regupression, the syntax is:

if($x =~ /pattern/)y{
do something
}

if($x !~ /pattern/){

do something
} I~ means not matcl+

wherepattern is some regular expression.

We saw last time that one may memorize parts efjalar expression and
also so substitutions (i.e. rewrites) based uperrélsults of a pattern match.

We can do more than this by taking the resulthiefrhatch and make the
replacement be based upoexpression involving the matched components.
Ex:

" $x="Fred: 70 70 100":

$x =~ s/(\d+) (\d+) (\d+)/$1+$2+$3/e;
print “$x\n”;

returns

Fred: 240

18

We can even use functions$f, $2,... as well.

Ex: | $x="Fred: 70 70 100”;
$x=~s/(\d+) (\d+) (\d+)/avg($1,$2,$3)/e;
print “$x\n”

sub avg{
my @list=@_;
my $n=0,$sum=0;
foreach (@list){

$sum+=$_;
$n++;
}
return($sum/$n);
}
yields
Fred: 80

split() and join()

Two useful string operations (related to regulgsregsions) areplit() andjoin()
Ex:
$sentence="The quick brown fox jumped over the lazy dog";

@words=split(\s/,$sentence);

@words=("The","quick","brown","fox",...,"dog");

split(/pattern/,$x)

splits$x at every occurrence gbattern/ in $x
and returns the components in an array.

(note, any valid regexp can be used)

19

This is extremely useful if we wish to processicadited data.

Ex:

#l/usr/bin/perl
while($line=<STDIN>){

chomp($line);
@C=split(\s+/,$line); -

print "$C[0] $C[1]\n";

will take the output of a command suchwvakd' and print the first two columns.

>who | twocol

Note, the/\s+/ indicated as a separator allows for irregular colwpacing
as well as allowing for real space%s or tabs'\t" etc.

Likewise one can easily join elements of an array a string.

@words=("The","quick","brown",...,"lazy","dog");
$sentence=join(" ",@words);

#$sentence="The quick brown fox jumped over the laz y dog";

join($separator, @stuff)

joins the elements @@stuff with the stringbseparator in between each 'word

20

Logical Short Circuiting

one liners

‘ (something) || (something else) ‘

If (something) returned true thefsomething else) is not executed.

If (something) returned false the(something else) is executed.

‘ (something) && (something else) ‘

If (something) returned true thefsomething else) is executed.
If (something) returned false thesomething else) is not executed.

i.e. Any command inside parentheses returns adbgaue.

Ex:

chomp($x=<STDIN>);
($x eq “thanks”) && (print “yer welcome\n”);

Here, if the inputtx was“thanks” then the output should Bger welcome”
butonly if the input was “thanks”

print “What day of the week is it?\n";
chomp($day=<STDIN>);
($day !~ /Friday/) || (print “End of the week\n");

Here, if it's not Friday then we don't say thasithe end of the week, but if it
is Friday then we let the user know it's the endhefweek.

21

I/O and Interaction with the Operating System

As we saw previously, we can take (standard) ifqouh the keyboard like so:

#!/usr/bin/perl

print "What is your name? ";
$name=<STDIN>;
chomp($name);

print "Hello there $name.\n";

or we can take multiple lines of standard inputrfrpiped in data.

#!/usr/bin/perl

while($line=<STDIN>){
chomp($line);
print "[$line]\n";

}

el
‘ Is —al | bracket ‘

Standard input is not the only way to read in data Perl script.

One can open specific files with thpen() andclose() = commands.

To open a file foreading:

open(MYFILE,"/home/me/somefile");
while($line=<MYFILE>){
do something

}
close(MYFILE);

22

If we wish to open a file fowriting :

open(MYFILE,">/home/me/somefile");
print MYFILE "Hi there\n";
close(MYFILE);

If one wants tappendto a file, the syntax is similar. (and very Unike)

open(MYFILE,">>/home/me/somefile");
print MYFILE "Here is some more stuffi\n”;
close(MYFILE);

Note, when doing any kind of 1/O like this, one sltbcheck
that the operation of opening the file actuallycaeded.

Ex: (terminate program if unable to open file)

(open(MYFILE,"Thome/me/somefile™)) || (die "Sorry!\ n”);

If the open() operation fails (i.e. returns false) then the pangdie 's with
the error message specified.

Also, you should close any open filehandle befoneryirogram terminates
or else buffered data may not get written to the fi

23

Say one wants to read the contents of a diredtoeycommands for this
areopendir(), readdir(), and closedir()

EX:

opendir(D,"/home/me");

while($entry=readdir(D)){
print "$entry\n";

}

closedir(D);

gives an'ls' of the directoryhome/me

Also, nochomp() operation is necessary sinaaddir() does not tack on
a newline\n at the end.

There are a number of ‘file test' operators whiaghtmaused to give information
about a given file or directory.

Ex: Let's modify the last example so that only srdalories ofhome/me are listed

opendir(D,"“/home/me");
while($entry=readdir(D)){
(-d “/home/me/$entry") && (print "$entry\n");

}
closedir(D);

‘ -d tests to see if the given object idieectory ‘

There are others as well. (See the quick refergnce.

24

As for interacting with the system directly, thare several possibilities.

system("command") - This is, as in C, allows one to invoke Unix comiahar
from within a script.
Moreover, the script waits until the call finishesfore,
proceeding.

‘command’ - This functions similarly teystem() except that
one can take output from the command and assign
it to a variable.

Ex:
@wholist=split(An/,"who);

@wholist contains the lines of
the output of the who command

Another option is to open a process as a filehandle

EX:

open(WHO,"whol");
while($line=<WHO>){
print "$line";

}
close(WHO);

In this case, we read output from the who commarnitiiasere
a file.

25

Likewise, we can open such a process filehandleditput too.

Ex:

open(LP,"|lpr -Pprintername");
print LP "Hi There\n";
close(LP);

Note, when one closes a process filehandle, Pdrivait for the process
to terminate. If not closed, the given process kgepning.

References for further information on Perl

Books

* Learning Perl by Randal L. Schwartz & Tom ChristiemgO'Reilly)

« Programming Perl by Larry Wall, Tom Christiansen don Orwant (O' Reilly)

« Perl in a Nutshell by Ellen Siever, Stephen Spaimhand Nathan Patwardhan (O' Reil

V)

Web

‘ http://mww.perl.com

| http://math.bu.edu/people/tkohl/per:

26

Intermediate Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

¢ 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services & Technology
111 Cummington Mall
Boston, Massachusetts 02215

27

