
1

Intermediate Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 05/12/15

• explore further the data types introduced before.

• introduce more advanced types
• special variables
• multidimensional arrays
• arrays of hashes

• introduce functions and local variables

• dig deeper into regular expressions

• show how to interact with Unix, including how to process
files and conduct other I/O operations

Outline

2

Data Types

scalars revisited

As we saw, scalars consist of either string or number values.
and for strings, the usage of " versus ' makes a difference.

Ex:
$name="Fred";
$wrong_greeting='Hello $name!';
$right_greeting="Hello $name!";
#
print "$wrong_greeting\n";
print "$right_greeting\n";

yields
Hello $name!
Hello Fred!

If one wishes to include characters like $, % , \ , " , ' (called meta-characters)
in a double quoted string they need to be preceded with a \ to be printed
correctly

Ex:

print "The coffee costs \$1.20 a cup.\n";

which yields

The coffee costs $1.20 a cup.

The rule of thumb for this is that if the character has some usage in
the language, to print this character literally, escape it with a \

3

$x="day";
print "It is ${x}time\n";

Sometimes we need to insert variable names in such a way that there
might be some ambiguity in how they get interpreted.

Suppose

$x="day" or $x="night"

and we wish to say "It is daytime" or "It is nighttime" using this variable.

incorrect correct

$x="day";
print "It is $xtime\n";

putting { } around the name will insert $x properly

This is interpreted as a variable called $xtime

arrays revisited

For any array @X, there is a related scalar variable $#X which gives
the index of the last definedelement of the array.

Ex:

@X=(3,9,0,6);
print "$#X\n";

yields

3

4

Similarly, arrays can be viewed in what is known as 'scalar context'

Ex:

@blah=(5,-3,2,1);
$a = @blah;

Here, $a equals 4 which is the current length of @blah

(i.e. $#X = @X-1 if you want to remember which is which.)

We can print whole arrays as follows.

@X=(4,5,6);
print "@X";

yields

4 5 6

Note, if you drop the " then the array still prints, but without the spaces
between each element.

5

There are built in functions that can manipulate arrays in such a way that
any array can be treated as a stack or queue!

@X=(2,5,-8,7);

push(@X,10); # now @X=(2,5,-8,7,10);

$a=pop(@X); # now @X=(2,5,-8,7) and $a=10

• pop removes the last elementof an array

• push adds an elementto the end of an array

Ex:

stacks and queues

@X=(2,5,-8,7);

unshift(@X,10); # now @X=(10,2,5,-8,7);

$a=shift(@X); # now @X=(2,5,-8,7) and $a=10

• shift removes the first elementof an array

• unshift adds an elementto the beginning of an array

Likewise,

6

miscellaneous array operations (neat tricks)

If $a and $b are two scalars, then ($a,$b) is implicitly an array,
and so the following works.

$a=1; $b=2;
($a,$b)=($b,$a);
print "$a $b\n";

we get

2 1

Given

(i.e. We can swap two values without needing a third temporary variable!)

Using the foreach() function, one can loop over the elements of an array
and modify each element along the way.

@a=(1,2,3);
foreach $element (@a){

$element = $element*4;
}
now @a=(4,8,12)

Ex:

7

Last time we introduced the keys() function which returns (as an array)
the keys in a given associative array.

Similarly, there is a values() function which returns (also as an array)
the values of an associative array.

Ex:

%Grades=("Tom"=>"A","Dick"=>"B","Harry"=>"C");

@People=keys(%Grades);
@People=("Tom","Dick","Harry");

@letters=values(%Grades);
@letters=("A","B","C");

associative arrays revisited

There is also a way of looping over all the key-value pairs in an associative array
using the each() function.

Ex:

%Grades=("Tom"=>"A","Dick"=>"B","Harry"=>"C");
while(($person,$grade)=each(%Grades)){

print "$person received a $grade\n";
}

Tom received a A
Dick received a B
Harry received a C

yields:

8

There is also a function for removing elements from an associative array.

Ex:

%Appointment=("Monday"=>"1PM",
"Wednesday"=>"10AM",
"Friday"=>"4PM");

Suppose now that our Wednesday appointment is cancelled.
We can then do:

delete($Appointment{"Wednesday"});

and now %Appointment consists of just two key and value pairs.

special variables

In Perl there are a number of variables (scalars, arrays and hashes) which
have special meanings within Perl, but which you can use as well.

scalars

$_ default input variable

As we have seen, one can take standard input from the keyboard
(or from a Unix pipe) as follows.

while($line=<STDIN>){
chomp($line);
print "$line\n";

}

Advanced Data Types

9

while(<STDIN>){
chomp();
print "$_\n";

}

One could rewrite this very compactly as follows

Here, the line of input was not explicitly assigned to a user specified variable,
but rather, Perl assigned it to the special variable $_ instead.

Likewise chomp() operates on $_ by default!

while(<>){
chomp();
print "$_\n";

}

Actually, one could rewrite this even more compactly as follows

as <> is synonymous with <STDIN>

10

We can also use $_ for regular expression matching.

while($line=<STDIN>){
chomp($line);
if($line =~/blah/){

do something
}

}

Ex:

can be rewritten as

while(<>){
chomp();
if(/blah/){

do something
}

}

There are many other default scalars

Ex:

$0 - name of the Perl script currently running

$] - version of Perl that you are using

$. - number of lines you have currently read in from a given file
(e.g. STDIN);

11

Additionally, there are default arrays and associative arrays

@ARGV- program argumentspassed to the script you are running

ex: If your script is called 'myscript' and if you invoke it as follows

>myscript Tom Dick Harry

then

$ARGV[0]="Tom"
$ARGV[1]="Dick"
$ARGV[2]="Harry"

An important associative array that Perl keeps track of is %ENV
which contains information about your current environment

Ex:

$ENV{HOME} # your home directory
$ENV{LOGNAME} # your login name
$ENV{PWD} # the current directory

An easy way to see all of %ENVis as follows:

#!/usr/bin/perl
foreach $key (keys(%ENV)){

print "$key => $ENV{$key}\n";
}

12

multidimensional arrays

A multidimensional array can be created and accessed in a number
of ways.

As a whole

@A=(
["a","b"],
["c","d"]
);

$A[0][0]="a"; $A[0][1]="b";
$A[1][0]="c"; $A[1][1]="d";

or, entry by entry

One can also create more exotic structures.

associative array of (ordinary) arrays

%Food=(
"fruits" => ["apples","oranges","pears"],
"vegetables" => ["carrots","lettuce"],
"grains" => ["rye","oats","barley"]

);

so the statement

print $Food{"vegetables"}[1];

yields

lettuce

13

associative array of associative arrays (a hash of hashes)

%StateInfo=(
"Massachusetts" => { "Postal Code" => "MA",

"Capital" =>"Boston"
},

"New York" => { "Postal Code" => "NY",
"Capital" => "Albany"

}
);

i.e.
$StateInfo{"New York"}{"Postal Code"}="NY";

Note the usage of the () and { } above.

Behind the scenes, all these structures are managed using what are known as
references which we’ll explore the inner details in the next tutorial.

With Perl, the syntax is such that you can create very flexible structures.

Most of the time, what seems reasonable on paper actually works syntactically!

14

Functions

In order to write more modular Perl scripts, one uses functions.

The general syntax is

sub function_name {

do something

}

One can put functions anywhere within a script but it's customary
to put them at the end. (the reverse of the custom in C)

The & before the name is (mostly) optional.

Invoking the function is done using either

&function_name() function_name()or

15

When one passes parameters to a function, they arrive in the function
in the array @_

Ex:

sub converse{
my ($first,$second) = @_;
print "$first spoke to $second\n";

}

converse(”Holmes","Watson");

yields

Holmes spoke to Watson

parameters (by value)

The individual elements of @_are accessible as $_[0] , $_[1] , ... etc.

So we could have also written this as

sub converse{
my $first = $_[0];
my $second = $_[1];
print "$first talked to $second\n";

}

The my directive is used to make the variables $first and $second
local to the subroutine. (what's known as lexical scoping)

That is, it is defined only for the duration of the given code block between { and }
which is usually the body of the function anyway.

With this, one can have the same variable name(s) used in various functions
without any potential conflicts.

16

sub converse{
my $first = shift;
my $second = shift;
print "$first talked to $second\n";

}

Another option for obtaining the parameters passed to a function
is to use the shift function we saw earlier.

Recall that shift(@X) extracts the leftmost element of @Xand removes
it from @Xand that subsequent calls remove the remaining elements of @X
in the same fashion.

Here, calling shift with no arguments implies that we wish to extract the
elements of @_.

parameters (by reference)

One may pass to a sub, a referenceto a given variable, and thereby allow the
sub to modify the underlying variable.

Ex:
sub myfunction{

my $x=shift;
$$x=$$x+10;

}

$a=3;
myfunction(\$a);
print "$a\n";

yields

13

Here we pass a reference
to $a which allows the
sub to modify $a itself.

Here we modify the value of
the underlying variable by
dereferencing it with the extra
leading $.

17

return values

To receive values from a function, one can use the return command.

Ex:

sub add_array{
my @numbers=@_;
my $sum=0;
my $n;
foreach $n (@numbers){

$sum += $n;
}
return $sum;

}

$s = add_array(3,5,10,6,-1);

or by invoking the return value by itself on the last line of the function.

Ex:

sub add_array{
my @numbers=@_;
my $sum=0; # local variable
foreach $n (@numbers){

$sum += $n;
}
$sum;

}

Note, one can return scalars, arrays or associative arrays from a function.

18

Regular Expressions

Recall that to match a variable against a regular expression, the syntax is:

if($x =~ /pattern/){
do something

}

where pattern is some regular expression.

or

if($x !~ /pattern/){
do something

} !~ means not match

We saw last time that one may memorize parts of a regular expression and
also so substitutions (i.e. rewrites) based upon the results of a pattern match.

We can do more than this by taking the results of the match and make the
replacement be based upon a expression involving the matched components.

Ex:
$x=“Fred: 70 70 100”;
$x =~ s/(\d+) (\d+) (\d+)/$1+$2+$3/e;
print “$x\n”;

returns

Fred: 240

19

We can even use functions of $1, $2,... as well.

Ex: $x=“Fred: 70 70 100”;
$x=~s/(\d+) (\d+) (\d+)/avg($1,$2,$3)/e;
print “$x\n”

sub avg{
my @list=@_;
my $n=0,$sum=0;
foreach (@list){

$sum+=$_;
$n++;

}
return($sum/$n);

}

yields

Fred: 80

split() and join()

Two useful string operations (related to regular expressions) are split() and join()

Ex:

$sentence="The quick brown fox jumped over the lazy dog";
@words=split(/\s/,$sentence);

@words=("The","quick","brown","fox",...,"dog");

split(/pattern/,$x)

splits $x at every occurrence of /pattern/ in $x
and returns the components in an array.

(note, any valid regexp can be used)

20

This is extremely useful if we wish to process collimated data.

Ex:

#!/usr/bin/perl
while($line=<STDIN>){

chomp($line);
@C=split(/\s+/,$line);
print "$C[0] $C[1]\n";

}

will take the output of a command such as 'who' and print the first two columns.

call this twocol

>who | twocol

Note, the /\s+/ indicated as a separator allows for irregular column spacing
as well as allowing for real spaces " " or tabs "\t" etc.

@words=("The","quick","brown",...,"lazy","dog");
$sentence=join(" ",@words);

#$sentence="The quick brown fox jumped over the laz y dog";

join($separator,@stuff)

joins the elements of @stuff with the string $separator in between each 'word'

Likewise one can easily join elements of an array into a string.

21

Logical Short Circuiting

one liners

(something) || (something else)

If (something) returned true then (something else) is not executed.

(something) && (something else)

If (something) returned true then (something else) is executed.

i.e. Any command inside parentheses returns a logical value.

If (something) returned false then (something else) is not executed.

If (something) returned false then (something else) is executed.

Ex:

chomp($x=<STDIN>);
($x eq “thanks”) && (print “yer welcome\n”);

Here, if the input $x was “thanks” then the output should be “yer welcome”
but only if the input was “thanks”

print “What day of the week is it?\n”;
chomp($day=<STDIN>);
($day !~ /Friday/) || (print “End of the week!\n”);

Here, if it’s not Friday then we don’t say that it’s the end of the week, but if it
is Friday then we let the user know it’s the end of the week.

22

I/O and Interaction with the Operating System

As we saw previously, we can take (standard) input from the keyboard like so:

#!/usr/bin/perl
print "What is your name? ";
$name=<STDIN>;
chomp($name);
print "Hello there $name.\n";

or we can take multiple lines of standard input from piped in data.

#!/usr/bin/perl
while($line=<STDIN>){

chomp($line);
print "[$line]\n";

}

ls –al | bracket

Standard input is not the only way to read in data to a Perl script.

One can open specific files with the open() and close() commands.

To open a file for reading:

open(MYFILE,"/home/me/somefile");
while($line=<MYFILE>){

do something
}
close(MYFILE);

23

If we wish to open a file for writing :

open(MYFILE,">/home/me/somefile");
print MYFILE "Hi there!\n";
close(MYFILE);

note the >

If one wants to append to a file, the syntax is similar. (and very Unix like)

open(MYFILE,">>/home/me/somefile");
print MYFILE "Here is some more stuff!\n";
close(MYFILE);

note the >>

Note, when doing any kind of I/O like this, one should check
that the operation of opening the file actually succeeded.

Ex: (terminate program if unable to open file)

(open(MYFILE,"/home/me/somefile")) || (die "Sorry!\ n”);

If the open() operation fails (i.e. returns false) then the program die 's with
the error message specified.

Also, you should close any open filehandle before your program terminates
or else buffered data may not get written to the file.

24

Say one wants to read the contents of a directory, the commands for this
are opendir(), readdir(), and closedir()

Ex:

opendir(D,"/home/me");
while($entry=readdir(D)){

print "$entry\n";
}
closedir(D);

gives an 'ls' of the directory /home/me

Also, no chomp() operation is necessary since readdir() does not tack on
a newline \n at the end.

There are a number of 'file test' operators which can be used to give information
about a given file or directory.

Ex: Let's modify the last example so that only subdirectories of /home/me are listed.

opendir(D,“/home/me");
while($entry=readdir(D)){

(-d “/home/me/$entry") && (print "$entry\n");
}
closedir(D);

-d tests to see if the given object is a directory

There are others as well. (See the quick reference.)

25

As for interacting with the system directly, there are several possibilities.

system("command") - This is, as in C, allows one to invoke Unix commands
from within a script.
Moreover, the script waits until the call finishes before
proceeding.

`command` - This functions similarly to system() except that
one can take output from the command and assign
it to a variable.

Ex:

@wholist=split(/\n/,`who`);
@wholist contains the lines of
the output of the who command

Another option is to open a process as a filehandle.

Ex:

open(WHO,"who|");
while($line=<WHO>){

print "$line";
}
close(WHO);

In this case, we read output from the who command as if it were
a file.

26

Likewise, we can open such a process filehandle for output too.

Ex:

open(LP,"|lpr -Pprintername");
print LP "Hi There!\n";
close(LP);

Note, when one closes a process filehandle, Perl will wait for the process
to terminate. If not closed, the given process keeps running.

References for further information on Perl

• Learning Perl by Randal L. Schwartz & Tom Christiansen (O'Reilly)

• Programming Perl by Larry Wall, Tom Christiansen and Jon Orwant (O' Reilly)

• Perl in a Nutshell by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan (O' Reilly)

Books

Web

http://www.perl.com

http://math.bu.edu/people/tkohl/perl My Perl Page!

27

Intermediate Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

c 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services & Technology
111 Cummington Mall
Boston, Massachusetts 02215

