
Optimization problem 

• In statistics Maximum-likelihood estimation (MLE) is a method of 

estimation the parameters of statistical model. 

 

• For a fixed set of data and underlying statistical model, MLE selects 

values of the model parameters that produces a distribution that gives 

the observed data the greatest probability. 

 

• R has a great build-in function glm() that allows to find solution to this 

problem for many standard distributions 
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Optimization problem 

 

 

• The problem of solving this optimization problem leads to 

the problem of solving the system of n equations with n 

variables. 
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Optimization problem 

• One of the well known method to solve this system of 

equations is a Newton – Raphson method, which is one 

of so called Householder’s methods in numerical analysis. 

 

• For the function of one variable it is based on the fact that 

for a differentiable function f(x) we have the following 

approximation:  
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Optimization problem 

• Similarly, for the system of  n functions of n variables: 

 

 

 

 

•                      , often called Jacobean matrix,  is a matrix 

of first order partial derivatives of all the functions. 
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Optimization problem 

One of the possible ways to 
implement this algorithm  

1. Define a function that calculates 

values at a given location; 

2. Define a function that evaluates a 

Jacobean matrix; 

3. Select a “best guess” starting value; 

4. Evaluate the function and Jacobean 

at the current location; 

5. Find inverse Jacobean matrix; 

6. Calculate the next position; 

7. Iterate through steps 4 – 6 until the 

root is found with desired precision. 

optimization.c 

o void getF () {…} 

 

o void findJacobian() {…} 

 

o void matrixInverse () {…} 

 

o void matrixVectMult () {…} 

 

o int isConverge() {…} 

 

o main () {…} 
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optimization.c 

 

 

 

 

 

 

 

// Return the values of the function at a given location 

void getF ( double *X, double *F) { 

 

 F[0] =  X[0] * X[0] + X[1]*X[1] - 4.; 

 F[1] = -X[0] * X[0] / 3. + X[1] ; 

 return; 

} 

 

Function definition: 

 

We would like to find 

the intersection 

between a circle and 

a parabola. 
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optimization.c 

 

 

 

// Evaluate Jacobean matrix 

void findJacobian( double *X, double H[2][2]){ 

 

 H[0][0] =  2. *  X[0]; 

 H[0][1] =  2. *  X[1]; 

 H[1][0] = -2. *  X[0]/3.; 

 H[1][1] =  1.; 

 return; 

} 

 

 

Jacobean matrix: 

 

. 
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Optimization 

( 3 ; 1) (- 3 ; 1) 
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Optimization 

 

// Calculate inverse matrix using Gauss-Jordan Elimination Process 

// Input Matrix: H       ( Jacobean matrix) 

// Output Matrix: HT      ( inverse Jacobean matrix) 

int matrixInverse( double H[K][K], double HT[K][K]){ 

 …  

} 

 

// Multiply matrix by a vector 

// Input Matrix: HT      ( inverse Jacobean matrix) 

// Input Vector: F   ( functions’ values at a current location) 

// Output Vector: delta  ( step toward the solution) 

void matrixVectMult( double HT[K][K], double *F, double *delta) { 

… 

} 
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Optimization 

#define K   2   // number of variables   

#define EPSILON  0.000001  

 

 

// Check for convergence 

int isConverge( double *delta){ 

     double p = 0;  

 

     for( int i = 0; i < K; i++) p += delta[i] * delta[i];  

     return ( pow(p,0.5) < EPSILON) 

} 
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Optimization 
int main (int argc, char **argv){  

     … 

     int maxSteps = 1000;  // maximum number of steps (to avoid infinite loop )  

     double X[2] = {30, 30.};  // starting location 

     int n_steps = 0;   // local variable to calculate the number of steps 

     do {  

 findJacobian(X,H);   // Jacobian matrix  

 matrixInverse(H, HT);  // Inverse matrix  

 getF(X, F);   // value of the function in the new location 
 matrixVectMult( HT, F, delta); // multiply matrix by the  vector  

 

 for ( i=0; i < K; i++) X[i] -= delta[i];  // move to the next location  

 n_steps++;    // count the number of steps  

 if (n_steps == maxSteps) break;  // check if maximum number of steps reached 

 

        } while ( ! isConverge(delta) );   // check if solution is found  

        printf(" Solution: %f %f is found in %d steps\n", X[0], X[1], n_steps);  

        return 0; 

} 
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Optimization 

This algorithm is actually widely used in many different areas, so we can expect, that a 

well debugged and efficient routine has been already written and might be available. So 

instead of “reinventing the wheel” we can search for the library that we can simply link to. 

 

One of such libraries that can be used for many statistics and linear algebra problems is 

the GNU Scientific Library (or GSL).  

• Written in C for numerical calculations in applied mathematics and science 

• Can be used for C and C++ projects 

• Free software under the GNU General Public License 

• Available on both Katana and BlueIce clusters 

• Provides over 1000 functions 
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The GNU Scientific Library 

A partial list of the subject areas, covered by the library : 

 

• Random numbers generators 

• Random Distributions 

• Quasi-Random sequences (in arbitrary dimensions) 

• Permutations 

• Eigen Systems 

• Statistics 

• Histograms 

• Minimization 

• Monte Carlo Integration 

• Root-Finding 

• Least-Squares Fitting (including non-linear fitting) 

… 
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The GNU Scientific Library 

Documentation, download instructions, many examples can be found 

on the web: 

http://www.gnu.org/software/gsl/ 

 

Each function has its own “man” – page. 

 

So lets see how we could solve the same system of equations using this library. 
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The GNU Scientific Library 

We first need to add GSL header files, where all GSL functions are declared: 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <gsl/gsl_vector.h> 

#include <gsl/gsl_multiroots.h> 
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The GNU Scientific Library 

// define the functions 

int rosenbrock_f (const gsl_vector * x, void *params,  gsl_vector * f){ 

  double a = ((struct rparams *) params)->a; 

  double b = ((struct rparams *) params)->b; 

 

  const double x0 = gsl_vector_get (x, 0); 

  const double x1 = gsl_vector_get (x, 1); 

 

  const double y0 = a * (x0*x0 + x1*x1 - 4); 

  const double y1 = b * (x1 - x0*x0/3.); 

 

  gsl_vector_set (f, 0, y0); 

  gsl_vector_set (f, 1, y1); 

 

  return GSL_SUCCESS; 

} 
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The GNU Scientific Library 

int main (void) { 

       const gsl_multiroot_fsolver_type *T; 

       gsl_multiroot_fsolver *s; 

     … 

       gsl_multiroot_function f = { &rosenbrock_f, n,  &p }; 

     … 

       double x_init[2] = {30.0, 3.0}; 

       gsl_vector *x = gsl_vector_alloc (n); 

       gsl_vector_set (x, 0, x_init[0]);       gsl_vector_set (x, 1, x_init[1]); 

      

       // this example uses “hybrid” algorithm, others (including Newton’s) are available 

       T = gsl_multiroot_fsolver_hybrids; 

       s = gsl_multiroot_fsolver_alloc ( T,  2 ); 

       gsl_multiroot_fsolver_set (s, &f, x); 

          … 

} 

17 



The GNU Scientific Library 

int main (void) { 

… 

 do { 

            iter++; 

            status = gsl_multiroot_fsolver_iterate (s); 

 if (status)  break    /* check if solver is stuck */ 

 status = gsl_multiroot_test_residual (s->f, 1e-7); 

         } while (status == GSL_CONTINUE &&  iter < 1000); 

 

       printf ("status = %s\n", gsl_strerror (status)); 

      

       gsl_multiroot_fsolver_free (s); 

       gsl_vector_free (x); 

       return 0; 

   } 
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The GNU Scientific Library 

Now we need to link the source to the library: 

 

gcc  -o gsl_optim gsl_optim.c -lgsl -lgslcblas 
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R and C integration 

We would like to use interactive style of R as well as its 

many easy to use built-in functions and graphics, but take 

advantage of fast C computations. 

 

It is especially useful for iterative calculations, such as 

Monte-Carlo algorithms. Metropolis – Hastings algorithm is 

one of them. 
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Metropolis – Hastings  algorithm 

• In Statistics it is a most popular Markov chain Monte Carlo (MCMC) 

method for obtaining a sequence of a random samples from a 

probability distribution for which direct sampling is difficult 

 

• Can be used to approximate the distribution (generate a histogram) 

 

• Compute an integral (such as expected value) 

 

• Usually used for multi-dimensional spaces 

 

• Was first proposed in 1953 (“… for fast computing machines”) 

 

• The Gibbs sampling is a special case 
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Metropolis – Hastings  algorithm 

• An outline of the algorithm:  

 

• Initialization:   Start with some value of X0 ( best guess) 

 

22 



Metropolis – Hastings  algorithm 

• An outline of the algorithm:  

 

• Initialization:   Start with some value of X0 ( best guess) 

• Proposal Step:  For each i –th step sample “candidate” from some proposal 

distribution Z ~ q(   z | X(i-1) ). 

 

• This distribution q depends on current state of the Markov chain Xi 

• The algorithm works the best if it close in shape to the target distribution 

• Often a normal distribution is used, centered on the current state Xi 

• User provides parameters for the proposed distribution 
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Metropolis – Hastings  algorithm 

• An outline of the algorithm:  

 

• Initialization:   Start with some value of X0 ( best guess) 

• Proposal Step:  For each i –th step sample “candidate” from some proposal 

distribution Z ~ q(   z | X(i-1) ). 

• Acceptance Step:  

• Calculate acceptance probability:  

  A = min{ 1, 
P(Z)  q(Xi−1| Z 

)
P(Xi−1)  

q(Z | Xi−1)
 } 

• Accept value with probability A: generate a random number u between 0 

and 1:   accept     Xi = Z,   if u ≤ A       and  Xi = Xi−1,  otherwise. 
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Metropolis – Hastings  algorithm 

• Possible Enhancements:  

 

• Burn-in period:  If the start value is chosen at a very bad location, a 

number of first iterations should be ignored (let algorithm run for a 

while before starting collecting values). 

 

• Lag:   If the acceptance rate of a proposal distribution is very low, the 

chain can get “stuck” in one location for some time. We can “skip” 

some number of iterations in between successive samples. 
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Metropolis – Hastings  algorithm 

• Consider Bivariate distribution:  
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Metropolis – Hastings  algorithm 

• Consider Bivariate distribution:  

 

 

 

 

 

 

• Conditional distribution:  
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Metropolis – Hastings  algorithm 

• Consider Bivariate distribution:  

 

 

 

 

 

 

• For proposal distribution we will use Gaussian:  
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Metropolis – Hastings  algorithm 

To improve numerical stability we rewrite the density function: 
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Metropolis – Hastings  algorithm 

To improve numerical stability we rewrite the density function: 

 

Logarithm of density function: 
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Metropolis – Hastings  algorithm 

R Implementation:  

 

 

 

# Create a function to calculate the logarithm of density  

log.dens <- function (x1, x2, nu ){  

      a<- (x1+x2) /(nu+2) 

      log(nu) + log(nu+1) - (nu+2) * log(exp(a) + exp(a - x1) + exp(a - x2)) 

} 
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Metropolis – Hastings  algorithm 

nu <‒ 1     

n <‒1e5     

x <‒ matrix(nrow = n,  ncol = 2)                

cur.x <‒ c(0, 0)                                

cur.logf<‒log.dens(cur.x[1],cur.x[2],nu=nu) 

n.accepted <‒ 0                               

sigma <‒ sqrt(9)   

  

 

• # set parameter value 

• # set the sample size 

• # create matrix to hold sample 

• # set the initial value 

• # evaluate density at cur.x 

• # count  the accepted values 

• # normal distribution st.d. 

Initialization:  
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Metropolis – Hastings  algorithm 
 

 

# Iterations 

for ( i  in  1 : n ) {                                 # repeat n times ... 

 

   new.x <‒ cur.x + sigma * rnorm(2)          # create proposed  value 

   new.logf <‒ log.dens( new.x[1], new.x[2],nu = nu ) # evaluate density at proposed value 

 

   prob.acceptance <‒ exp( new.logf - cur.logf )    # probability of acceptance 

 

   if ( runif(1) < prob.acceptance) {              # if we accept the proposed value ... 

       n.accepted <‒ n.accepted + 1                # incr. the counter of accepted values 

       cur.x <‒ new.x                             # accept the new value 

       cur.logf <‒ new.logf                      # retain the density at the accepted 
value 

   } 

   x[i,] <‒ cur.x     # store current value 

} 

 

33 



Metropolis – Hastings  algorithm 

 

#load R source 

source(“mcmcR.r”) 

 

# call the function 

s<‒mcmcR (10 000) 

 

# Plot the results 

plot(s) 
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