
Integrating R and C/C++

Robert Putnam

Katia Oleinik

Information Services and Technology

Introduction

 Background of participants, motivations

 Agenda
 Day one

 Linux/emacs basics

 C hands-on tutorial

 Day two

 C wrap-up

 C++ introduction

 Calling C/C++ from R

 Benchmarking, debugging, etc.

 Rcpp, RcppArmadillo, RcppBUGS, etc.

 Applications

Information Services & Technology 5/9/2012

Introduction to programming in C: Goals

 To write simple C programs

 To understand and modify existing C code

 To write and use makefiles

Information Services & Technology

4

5/9/2012

C History

 Developed by Dennis Ritchie at Bell Labs in 1969-73
 Originally designed for system software

 Impetus was porting of Unix to a DEC PDP-11

 PDP-11 had 24kB main memory!

 See The C Programming Language by Kernighan &

Ritchie (2nd ed.) (aka “K & R”)

 Official ANSI standard published in 1989
 Updated in 1999

 C++ (1983)
 Author: Bjarne Stroustrup (Bell Labs), 1979, “C with classes”

 More later…

Information Services & Technology

5

5/9/2012

Compiled vs. Interpreted Languages

 Interpreted languages
 when you type something, e.g., “x=y+z”, it is immediately parsed,

converted to machine language, and executed

 examples: R, MATLAB, Python

 advantage

 interactive, allows fast development

 disadvantage

 generally uses more CPU/memory/time for given task

Information Services & Technology

6

5/9/2012

Compiled (cont’d)

 Compiled languages
 examples: C, C++, Fortran

 source code must be processed through a compiler

 checks for correct syntax and semantics

 translates source code into assembly, then assembles (or calls

assembler) to produce machine code

 passes machine code to linker, which creates executable

 this is the file that you actually run

 example: .exe file in Windows

 default name in Unix/Linux: a.out

Information Services & Technology

7

5/9/2012

Variables

 Variables are declared to have a certain type.

 Common types include:
 int

 “integer”

 number with no decimal places: -56, 857436

 float, double

 “floating-point”

 number with decimal: 1.234, 4.0, 7.

 float: single precision, 32 bits*, ~7 significant digits

 double: double precision, 64 bits*, ~16 significant digits

Information Services & Technology

8

5/9/2012

*on most computers

Variables (cont’d)

 char

 “character”

 enclosed in single quotes

 ‘x’, ‘$’

 character string is string of chars enclosed in double quotes

 “This is a character string.”

Information Services & Technology

9

5/9/2012

Syntax

 C is case-sensitive

 Spaces, linefeeds, etc., don’t matter except within

character strings.

 Source lines end with semicolons (optional in R)

 Comments
 notes for humans that are ignored by the compiler

 C: enclosed by /* */

 C++: // at beginning of comment

 many C compilers also accept this syntax

 Official advice: use them liberally (so you can still understand your

program next year [or next week, depending on your age])

Information Services & Technology

10

5/9/2012

Functions

 (As in R), source code largely consists of functions
 each one performs some task

 you write some of them

 some are supplied, typically in libraries

 every code contains at least one function, called main

 functions often, though not always, return a value, e.g.:
 int, float, char, etc.

 default return value is int

 To explicit about returning no value, declare as void

Information Services & Technology

11

5/9/2012

Functions (cont’d)

 functions may, but do not have to, take arguments
 “arguments” are inputs to the function

 e.g., y = sin(x)

 code blocks, including entire functions, are enclosed

within “curly brackets” { }

 main function is defined in source code as follows:

int main() {

 function statements

}

Information Services & Technology

12

5/9/2012

type declaration function name function arguments

 (we [currently]have no arguments here

 but still need parentheses)

Functions (3)

 Style note: some people like to arrange the brackets

like

int main()

{

 function statements

}

 Either way is fine
 Friendly advice: be consistent!

 Emacs advertisement: a good editor can do automatic

indentation, help you find matching brackets, etc.

Information Services & Technology

13

5/9/2012

How to say “hello, world”: printf

 printf is a function, part of C’s standard input/output

library, that is used to direct output to the screen, e.g.,

printf(“my string”);

 The above syntax does not include a line feed. We

can add one with:

printf(“my string\n”);
where \n is a special character representing LF

Information Services & Technology

14

5/9/2012

printf and stdio.h

 Some program elements, such as library functions like

printf, are declared in header files, aka “include files.”

 Syntax:

#include <stdio.h> or

#include “stdio.h”

 The contents of the named file are presented to the

compiler as if you had placed them directly in your

source file. In the case of printf, stdio.h informs the

compiler about the arguments it takes, so the compiler

can raise a warning or error if printf is called

incorrectly. More will be said about this later.

Information Services & Technology

15

5/9/2012

Exercise 1

 Write a “hello, world” program in an editor

 Program should print a character string

 General structure of code, in order:
 include the file “stdio.h”

 define main function

 use printf to print string to screen

 Save it to the file name hello.c

 solution

Information Services & Technology

16

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex1/

Compilation

 A compiler is a program that reads source code and

converts it to a form usable by the computer/CPU, i.e.,

machine code

 Code compiled for a given type of processor will not

generally run on other types
 AMD and Intel are compatible

 We’ll use gcc, since it’s free and readily available

Information Services & Technology

17

5/9/2012

Compilation (cont’d)

 Compilers have numerous options
 Try ‘man gcc’, or see gcc compiler documentation at

 http://gcc.gnu.org/onlinedocs/

 gcc refers to the “GNU compiler collection,” which includes the C

compiler (gcc) and the C++ compiler (g++)

 For now, we will simply use the –o option, which

allows you to specify the name of the resulting

executable

Information Services & Technology

18

5/9/2012

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Compilation (3)

 In a Unix window:

gcc –o hello hello.c

 “hello” is name of executable file (compiler output)

 “hello.c” is source file name (compiler input)

 Compile your code

 If it simply returns a Unix prompt it worked

 If you get error messages, read them carefully and see

if you can fix the source code and re-compile

Information Services & Technology

19

5/9/2012

Compilation (4)

 Once it compiles correctly, type the name of the

executable

./hello

at the Unix prompt, and it will run the program

 should print the string to the screen

Information Services & Technology

20

5/9/2012

Declarations

 different variable types have different internal

representations, so CPUs use different machine

instructions for int, float, etc.

 must tell compiler the type of every variable by

declaring them

 example declarations:

int i, jmax, k_value;

float xval, elapsed_time;

char aletter, bletter;

Information Services & Technology

21

5/9/2012

Arithmetic
 +, -, *, /

 No power operator (see next bullet)

 Math functions declared in math.h
 pow(x,y) raises x to the y power

 sin, acos, tanh, exp, sqrt, etc.

 for some compilers, need to add –lm flag (that’s a small el) to

compile command to link against math library

 Exponential notation indicated by letter “e”

 4.2e3

 Good practice to use decimal points with floats, e.g.,

 x = 1.0 rather than x = 1

Information Services & Technology

22

5/9/2012

3102.4 

Arithmetic (cont’d)

 Computer math
 Value of variable on left of equals sign is replaced by value of

expression on right

 Many legal statements are algebraically nonsensical, e.g.,

 i = i + 1;

Information Services & Technology

23

5/9/2012

Arithmetic (cont’d)

 ++ and -- operators
 these are equivalent:

i = i+1;

i++;
 always increments/decrements by 1

 +=
 these are equivalent:

x = x + 46.3*y;

x += 46.3*y;

Information Services & Technology

24

5/9/2012

Arithmetic (3)

 Pure integer arithmetic truncates result!

5/2 = 2

2/5 = 0

 Can convert types with cast operator

float xval;

int i, j;

xval = (float) i / (float) j;

Information Services & Technology

25

5/9/2012

A Little More About printf

 To print a value (as opposed to a literal string), must

specify a format

 For now we will use %f for a float and %d for an int

 Here’s an example of the syntax:
printf(“My integer value is %d and my float value is %f \n”, ival, fval);

 The values listed at the end of the printf statement will

be embedded at the locations of their respective

formats.

Information Services & Technology

26

5/9/2012

Exercise 2

 Write program to convert Celcius temperature to

Fahrenheit and print the result.
 Hard-wire the Celcius value to 100.0

 We’ll make it an input value in a subsequent exercise

 Don’t forget to declare all variables

 Here’s the equation:

F = (9/5)C + 32

 solution

Information Services & Technology

27

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex2/

Address-of Operator

 Every variable has an address in which it is stored in

memory

 In C, we sometimes need to access the address of a

variable rather than its value
 Will go into more details when we discuss pointers

 Address-of operator & returns address of specified

variable
 &ival returns the address of the variable ival

 rarely need to know actual value of address, just need to use it

Information Services & Technology

28

5/9/2012

scanf

 reads from keyboard

 2 arguments
 character string describing format

 address of variable

 must include stdio.h

 example
int ival;

scanf("%d", &ival);

Information Services & Technology

29

5/9/2012

Exercise 3

 Modify Celcius program to read value from keyboard
 Prompt for Celcius value using printf

 Read value using scanf

 Rest can remain the same as last exercise

 solution

Information Services & Technology

30

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex3/

Arrays

 Declare arrays using []

float x[100];

char a[25];

 Array indices start at 0 (not 1, as in R)
 Declaration of x above creates locations for x[0] through x[99]

 Multiple-dimensional arrays are declared as follows:

int a[10][20];
 Note: In C, the last axis varies fastest; we say that C stores arrays in

“row-major” order. R, on the other hand, stores arrays in “column-

major” order.

Information Services & Technology

31

5/9/2012

For Loop

 for loop repeats calculation over range of indices

for(i=0; i<n; i++) {

 a[i] = sqrt(pow(b[i],2) + pow(c[i],2));

}

 for statement has 3 parts:
 initialization

 completion condition (i.e., if true, keep looping)

 what to do after each iteration

Information Services & Technology

34

5/9/2012

Exercise 4

 Write program to:
 declare two float vectors of length 3

 prompt for first vector and read values

 prompt for second vector and read values

 calculate dot product

 print the result

 Solution

 Possible to use “redirection of standard input” to avoid

retyping each time:
 % echo 1 2 3 4 5 6 | dotprod

Information Services & Technology

35

5/9/2012

i

i

i bac 


3

1

http://scv.bu.edu/documentation/presentations/intro_to_c/ex4/

Pointers

 When you declare a variable, a location of appropriate

size is reserved in memory

 When you do an assignment, the value is placed in

that memory location

Information Services & Technology

37

5/9/2012

double x;

x = 3.2;

0

8

16

32

address

 3.2

Pointers (cont.)

 A pointer is a variable containing a memory address

 Declared using *

double *p;

 Often used in conjunction with address-of operator &

double x, *p;

p = &x;

Information Services & Technology

38

5/9/2012

Pointers (3)

double x, *p;

p = &x;

Information Services & Technology

39

5/9/2012

1040

1048

1056

1064

address

0

8

16

24

address

p 16 x

Pointers (4)

 Depending on context, * can also be the dereferencing

operator
 Value stored in memory location pointed to by specified pointer

 *p = 3.2;

 Common error

double *p;

*p = 3.2;

double x, *p;

p = &x;

*p = 3.2;

Information Services & Technology 5/9/2012

Wrong! – p doesn’t have value yet

correct

Pointers (5)

 The name of an array is actually a pointer to the

memory location of the first element
 a[100]

 “a” is a pointer to the first element of the array (a[0])

 These are equivalent:
x[0] = 4.53;

*x = 4.53;

Information Services & Technology

41

5/9/2012

Pointers (6)

 If p is a pointer and n is an integer, the syntax p+n

means to advance the pointer by n locations*

 These are therefore equivalent:
x[4] = 4.53;

*(x+4) = 4.53;

Information Services & Technology

42

5/9/2012

*i.e., for most machines, 4*n bytes for an int, and 8*n

bytes for a double

Pointers (7)

Information Services & Technology

43

5/9/2012

 In multi-dimensional arrays, values are stored in

memory with last index varying most rapidly

 (a[0][0], a[0][1], a[0][2], …)
 Opposite of R, MATLAB, et al.

 The two statements in each box are equivalent for an

array declared as int a[5][5]:

a[0][3] = 7; a[1][0] = 7;

*(a+3) = 7; *(a+5) = 7;

sizeof

Information Services & Technology

44

5/9/2012

 Some functions require size of something in bytes

 A useful function – sizeof(arg)
 The argument arg can be a variable, an array name, a type

 Returns no. bytes in arg

double x, y[5];

sizeof(x) (8)

sizeof(y) (40)

sizeof(double) (8)

Dynamic Allocation

 Suppose you need an array, but you don’t know how

big it needs to be until run time.

 Tried and true method - use malloc function:
malloc(n)

 n is no. bytes to be allocated

 returns pointer to allocated space

 declared in stdlib.h

 Many C compilers now accept “float f[n]”, where ‘n’ is

determined at runtime.

Information Services & Technology

45

5/9/2012

Dynamic Allocation (cont’d)

Information Services & Technology

46

5/9/2012

 Declare pointer of required type
float *myarray;

 Suppose we need 101 elements in array:
 myarray = malloc(101*sizeof(float));

 free releases space when it’s no longer needed:
free(myarray);

Exercise 5

 Modify dot-product program to handle vectors of any

length
 Prompt for length of vectors (printf)

 Read length of vectors from screen (scanf)

 Dynamically allocate vectors (malloc)

 Prompt for and read vectors (printf, scanf)

 use for loop

 Don’t forget to include stdlib.h so you have access to the malloc

function declaration

 solution

Information Services & Technology

47

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex5/

if/else

Information Services & Technology

48

5/9/2012

 Conditional execution of block of source code

 Based on relational operators
 < less than

 > greater than

 == equal

 <= less than or equal

 >= greater than or equal

 != not equal

 && and

 || or

if/else (cont’d)

 Condition is enclosed in parentheses

 Code block is enclosed in curly brackets

if(x > 0.0 && y > 0.0) {

 printf(“x and y are both positive\n”);

 z = x + y;

}

Information Services & Technology

49

5/9/2012

if/else (3)

Information Services & Technology

50

5/9/2012

 Can have multiple conditions by using else if

if(x > 0.0 && y > 0.0) {

 z = 1.0/(x+y);

} else if(x < 0.0 && y < 0.0) {

 z = -1.0/(x+y);

} else {

 printf(“Error condition\n”);

}

Exercise 6

Information Services & Technology

51

5/9/2012

 In dot product code, check if the magnitude of the dot

product is less than using the absolute value

function fabsf. If it is, print a warning message.
 With some compilers you need to include math.h for the fabsf

function. You should include it to be safe.

 With some compilers you would need to link to the math library by

adding the flag –lm to the end of your compile/link command.

 solution

610

http://scv.bu.edu/documentation/presentations/intro_to_c/ex6/

Functions

Information Services & Technology

52

5/9/2012

 C functions return a single value

 Return type should be declared (default is int)

 Argument types must be declared

 Sample function definition:

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 return z;

}

Functions (cont’d)

Information Services & Technology

53

5/9/2012

 Use of sumsqr function:

a = sumsqr(b,c);

 Call by value
 when function is called, copies are made of the arguments

 scope of copies is scope of function

 after return from function, copies no longer exist

Functions (3)

Information Services & Technology

54

5/9/2012

b = 2.0; c = 3.0;

a = sumsqr(b, c);

printf(“%f”, b);

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 x = 1938.6;

 return z;

}

this line has no effect on b

will print 2.0

Functions (4)

 If you want to change argument values, pass pointers

int swap(int *i, int *j) {

 int k;

 k = *i;

 *i = *j;

 *j = k;

 return 0;

}

Information Services & Technology

55

5/9/2012

Functions (5)

 Let’s examine the following code fragment:

int a, b;

a = 2; b = 3;

swap(&a, &b);

 Memory after setting values of a and b

Information Services & Technology

56

5/9/2012

address

16

20

24

28

variable

b

a

3

2

Functions (6)

 When function is called, copies of arguments are

created in memory

 i, j are pointers to ints with values &a and &b

Information Services & Technology

57

5/9/2012

address

16

20

24

28

variable

b

a

3

2

address

48

52

56

60

variable

j

i

24

20 &a i

&b j

swap(&a, &b); int swap(int *i, int *j){ ... }

Information Services & Technology

58

5/9/2012

Functions (7)

 What happens to memory for each line in the function?

k

address

16

20

24

28

variable

b

a

3

2

address

48

52

56

60

variable

j

i

24

20
int k;

address

16

20

24

28

variable

b

a

3

2

address

48

52

56

60

variable

j

i

24

20

k = *i;

k 2

Information Services & Technology

59

5/9/2012

Functions (8)

k

address

16

20

24

28

variable

b

a

3

3

address

48

52

56

60

variable

j

i

24

20
*i = *j;

address

16

20

24

28

variable

b

a

2

3

address

48

52

56

60

variable

j

i

24

20

*j = k;

k 2

2

Information Services & Technology

60

5/9/2012

Functions (9)

 return 0;

address

16

20

24

28

variable

b

a

2

3

address

48

52

56

60

variable

24

20

2

Exercise 7

 Modify dot-product program to use a function to

compute the dot product
 The function definition should go after the includes but before the

main program in the source file

 Arguments can be an integer containing the length of the vectors and

a pointer to each vector

 Function should only do dot product, no i/o

 Do not give function same name as executable

 I called my executable “dotprod” and the function “dp”

 solution

Information Services & Technology

61

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex7/

Function Prototypes

 C compiler checks arguments in function definition and

calls
 number

 type

 If definition and call are in different files, compiler

needs more information to perform checks
 this is done through function prototypes

Information Services & Technology

62

5/9/2012

Function Prototypes (cont’d)

 Prototype looks like 1st line of function definition
 type

 name

 argument types

float dp(int n, float *x, float *y);

 Argument names are optional:

float dp(int, float*, float*);

Information Services & Technology

63

5/9/2012

Function Prototypes (3)

 Prototypes are often contained in include files

/* mycode.h contains prototype for myfunc */

#include “mycode.h”

int main(){

…

myfunc(x);

…

}

Information Services & Technology

64

5/9/2012

Basics of Code Management

 Large codes usually consist of multiple files

 Some programmers create a separate file for each

function
 Easier to edit

 Can recompile one function at a time

 Files can be compiled, but not linked, using –c option;

then object files can be linked later

gcc –c mycode.c

gcc –c myfunc.c

gcc –o mycode mycode.o myfunc.o

Information Services & Technology

65

5/9/2012

Exercise 8

 Put dot-product function and main program in separate

files

 Create header file
 function prototype

 .h suffix

 include at top of file containing main

 Compile, link, and run

 solution

Information Services & Technology

66

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex8/

Makefiles

 make is a Unix utility to help manage codes

 When you make changes to files, it will
 automatically deduce which files have been modified and compile

them

 link latest object files

 Makefile is a file that tells the make utility what to do

 Default name of file is “makefile” or “Makefile”
 Can use other names if you’d like

Information Services & Technology

67

5/9/2012

Makefiles (cont’d)

 Makefile contains different sections with different

functions
 The sections are not executed in order!

 Comment character is #
 As with source code, use comments freely

Information Services & Technology

68

5/9/2012

Makefiles (3)

 Simple sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

69

5/9/2012

Makefiles (4)

 Have to define all file suffixes that may be

encountered

.SUFFIXES: .c .o

 Just to be safe, delete any default suffixes first with a

null .SUFFIXES: command

.SUFFIXES:

.SUFFIXES: .c .o

Information Services & Technology

70

5/9/2012

Makefiles (5)

 Have to tell how to create one file suffix from another

with a suffix rule

.c.o:

 gcc -c $*.c

 The first line indicates that the rule tells how to create

a .o file from a .c file

 The second line tells how to create the .o file

 *$ is automatically the root of the file name

 The big space before gcc is a tab, and you must use it!

Information Services & Technology

71

5/9/2012

Makefiles (6)

 Finally, everything falls together with the definition of a

rule

target: prerequisites

 recipe

 The target is any name you choose
 Often use name of executable

 Prerequisites are files that are required by other files
 e.g., executable requires object files

 Recipe tells what you want the makefile to do

 May have multiple targets in a makefile

Information Services & Technology

72

5/9/2012

Makefiles (7)

 Revisit sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

73

5/9/2012

automatic variable for file root

Makefiles (8)

 When you type “make,” it will look for a file called

“makefile” or “Makefile”

 searches for the first target in the file

 In our example (and the usual case) the object files

are prerequisites

 checks suffix rule to see how to create an object file

 In our case, it sees that .o files depend on .c files

 checks time stamps on the associated .o and .c files to

see if the .c is newer

 If the .c file is newer it performs the suffix rule
 In our case, compiles the routine

Information Services & Technology

74

5/9/2012

Makefiles (9)
 Once all the prerequisites are updated as required, it

performs the recipe

 In our case it links the object files and creates our

executable

 Many makefiles have an additional target, “clean,” that

removes .o and other files
clean:

 rm –f *.o

 When there are multiple targets, specify desired target

as argument to make command
make clean

Information Services & Technology

75

5/9/2012

Makefiles (10)

 Also may want to set up dependencies for header files
 When header file is changed, files that include it will automatically

recompile

 example:
myfunction.o: myincludefile.h

 if time stamp on .h file is newer than .o file and .o file is required in

another dependency, will recompile myfunction.c

 no recipe is required

Information Services & Technology

76

5/9/2012

Exercise 9a

 Create a makefile for your dot product code

 Include 2 targets
 create executable

 clean

 Include header dependency (see previous slide)

 Delete old object files and executable manually
 rm *.o dotprod

 Build your code using the makefile

 solution

Information Services & Technology

77

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex9/

Exercise 9b

 Type make again
 should get message that it’s already up to date

 Clean files by typing make clean
 Type ls to make sure files are gone

 Type make again
 will rebuild code

 Update time stamp on header file
 touch dp.h

 Type make again
 should recompile main program, but not dot product function

Information Services & Technology

78

5/9/2012

C Preprocessor

 Initial processing phase before compilation

 Directives start with #

 We’ve seen one directive already, #include
 simply includes specified file in place of directive

 Another common directive is #define
#define NAME text

 NAME is any name you want to use

 text is the text that replaces NAME wherever it appears in source

code

Information Services & Technology

79

5/9/2012

C Preprocessor (cont’d)

 #define often used to define global constants

#define NX 51

#define NY 201

…

float x[NX][NY];

 Also handy to specify precision

#define REAL double

…

REAL x, y;

Information Services & Technology

80

5/9/2012

C Preprocessor (3)

 Can also check values using the #if directive

 In the current exercise code, the function fabsf is used,

but that is for floats. For doubles, the function is fabs.

We can add this to dp.h file:

#if REAL == double

#define ABS fabs

#else

#define ABS fabsf

#endif

Information Services & Technology

82

5/9/2012

C Preprocessor (4)

 scanf format
 “%f” for 4-byte floats

 “%lf” (long float) for 8-byte floats

 Can also use a directive for this:

#if REAL == double

#define SCANFORMAT “%lf”

#else

#define SCANFORMAT “%f”

#endif

Information Services & Technology

83

5/9/2012

C Preprocessor (5)

 #define can also be used to define a macro with

substitutable arguments

#define ind(m,n) (n + NY*m)

k = 5*ind(i,j); k = 5*(i + NY*j);

 Be careful to use () when required!
 without () above example would come out wrong

 k = 5*i + NY*j wrong!

Information Services & Technology

84

5/9/2012

Exercise 10
 Modify dot-product code to use preprocessor

directives to declare double-precision floats
 Add directives to header file to define REAL as shown in “C

Preprocessor (cont’d.)”

 Add directives to header file to choose ABS as shown in “C

Preprocessor (3)”

 Add directives to header file to choose SCANFORMAT as shown in

“C Preprocessor (4)”

 Change all occurrences of float to REAL in dotprod.c, dp.c, and dp.h

 Change fabsf to ABS in main routine

 Change “%f” (including quotes) to SCANFORMAT in main

 Include math.h in main program if you have not already done so

 Include dp.h in function dp.c (for definition of REAL)

 solution

Information Services & Technology

85

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex10/

Structures

 Can package a number of variables under one name

struct grid{

 int nvals;

 float x[100][100], y[100][100], jacobian[100][100];

};

 Note semicolon at end of definition

Information Services & Technology

86

5/9/2012

Structures (cont’d)

 To declare a variable as a struct

struct grid mygrid1;

 Components are accessed using .
mygrid1.nvals = 20;

mygrid1.x[0][0] = 0.0;

 Handy way to transfer lots of data to a function

int calc_jacobian(struct grid mygrid1){…

Information Services & Technology

87

5/9/2012

Exercise 11

 Define struct rvec with 2 components in your header

file (.h)
 vector length (int)

 pointer to REAL vector

 Modify dot-product code to use rvec structure

 solution

Information Services & Technology

88

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex11/

i/o

 Often need to read/write data from/to files rather than

screen

 File is associated with a file pointer through a call to

the fopen function

 File pointer is of type FILE, which is defined in stdio.h.

Information Services & Technology

89

5/9/2012

i/o (cont’d)

 fopen takes 2 character-string arguments
 file name

 mode

 “r” read

 “w” write

 “a” append

FILE *fp;

fp = fopen(“myfile.d”, “w”);

Information Services & Technology

90

5/9/2012

i/o (3)

 Write to file using fprintf
 Need stdio.h

 fprintf has 3 arguments
1. File pointer

2. Character string containing what to print, including any formats

 %f for float or double

 %d for int

 %s for character string

3. Variable list corresponding to formats

Information Services & Technology

91

5/9/2012

i/o (4)

 Special character \n produces new line (carriage

return & line feed)
 Often used in character strings

“This is my character string.\n”

 Example:

fprintf(fp, “x = %f\n”, x);

 Read from file using fscanf
 arguments same as fprintf

 When finished accessing file, close it

fclose(fp);

Information Services & Technology

92

5/9/2012

Exercise 12

 Modify dot-product code to write the dot-product result

to a file

 If magnitude is small, still write message to screen

rather than file

 After result is written to file, write message “Output

written to file” to screen.

 solution

Information Services & Technology

93

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex12/

Binary i/o
 Binary data require much less disk space than ascii

(formatted) data

 Use “b” suffix on mode

fp = fopen(“myfile.d”, “wb”);

 Use fwrite, fread functions

float x[100];

fwrite(x, sizeof(float), 100, fp)

 Note that there is no format specification

 We’re strictly writing data

Information Services & Technology

94

5/9/2012

pointer to

1st element
no. bytes in

each element
max. no. of

elements

file pointer

Exercise 13

 Modify dot-product program to:
 Write result to binary file

 just write value, not character string

 After file is closed, open it back up and read and print result to make

sure that it wrote/read correctly

 don’t forget to open file with “rb” rather than “wb”

 solution

Information Services & Technology

95

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex13/

Command-Line Arguments
 It’s often convenient to type some inputs on the

command line along with the executable name, e.g.,

mycode 41.3 “myfile.d”

 Define main with two arguments:
 int main(int argc, char *argv[])

1. argc is the number of items on the command line, including name

of executable

• “argument count”

2. argv is an array of character strings containing the arguments

 “argument values”

 argc[0] is pointer to executable name

 argc[1] is pointer to 1st argument, argc[2] is pointer to 2nd

argument, etc.

Information Services & Technology

96

5/9/2012

Command-Line Arguments (cont’d)

 Arguments are character strings, often want to convert

them to numbers

 Some handy functions:
 atoi converts string to integer

 atof converts string to double

 To convert to float, recast result of atof

 They live in stdlib.h

 arguments are pointers to strings, so you would use, for example

ival = atoi(argv[2])

to convert the 2nd argument to an integer

Information Services & Technology

97

5/9/2012

Command-Line Arguments (3)

 Often want to check the value of argc to make sure the

correct number of command-line arguments were

provided

 If wrong number of arguments, can stop execution

with exit statement
 Can exit with status, e.g.:

exit(1);

 With bash shell, view status by echoing ‘$?’:

 $ echo $?

 1

Information Services & Technology

98

5/9/2012

Exercise 14
 Modify dot-product code to enter the vector length as a

command-line argument rather than prompting for it

 Use atoi

 Add test on argc to make sure a command-line

argument was provided
 argc should equal 2, since the executable name counts

 if argc is not equal to 2, print message and return to stop execution

 solution

Information Services & Technology

99

5/9/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex14/

References

 Lots of books available
 Kernighan & Ritchie, “The C Programming Language”

 gcc
http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc/

 If you’d like to move on to C++
 Good C++ book for scientists:

 Barton and Nackman, “Scientific and Engineering C++”

 Quick and dirty C++ book:

 Liberty, “Teach Yourself C++ in 21 Days”

Information Services & Technology

100

5/9/2012

http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc/

Survey

 Please fill out the course survey at

http://scv.bu.edu/survey/tutorial_evaluation.html

Information Services & Technology

101

5/9/2012

