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Results

Introduction

Phishing Attacks and Emails
● Phishing consists of approximately 25% of all internet crime complaints.
● Phishing attacks caused over $70 million in losses in 2024 alone.
● Nearly half of all cyber attacks involve some type of phishing attack.

Problem Statement
● Current models can accurately 

detect phishing emails but 
operate as black boxes.

● End-users and analysts receive 
minimal transparency regarding 
classification decisions, limiting 
interpretability and trust.

Goals
● Develop a phishing detection 

pipeline that matches the 
accuracy of current models 
while enhancing explainability.

● Produce a front-end interface for users to submit emails for classification, 
providing real-time feedback and recommendations.

Methods

Data Sources and Preprocessing
● Combine six partially-processed public datasets
● Remove extraneous columns, drop invalid rows, and reprocess for additional 

summary statistics (i.e., word count, URL count, etc.)
● Remove stopwords & special characters for natural language processing

Vectorization and Text Embedding Techniques
Text Frequency-Inverse Document Frequency (TF-IDF)
● Considers word frequency in a document and rarity across the dataset
● Efficient, but ignores word order and context; poor at semantics

Sentence-BERT (SBERT)
● Densely vectorizes documents using a pre-trained BERT model
● Strong contextualization, but computationally heavy
● Requires chunk-and-pool document embedding due to a 512 token limit

Evaluating Classification Models
● MLP Classifier: Neural network approach; accurate but slow.
● Logistic Regression: Simple mathematical approach; accurate and fast.
● Random Forest: Many decision trees; acceptable accuracy but slow.
● Multinomial/Gaussian Naive Bayes: Naive NLP approach; quick but inaccurate.
● BERT Classifier: Fine-tuned version of a pre-trained BERT model and tokenizer; 

captures textual nuance and context; slowest to train but highly accurate.

Discussion

Findings
● TF-IDF outperforms SBERT vectorization with simpler models.
● BERT outperforms simpler models regardless of vectorization techniques.
● SHAP combined with LLMs can be effectively used to create approachable, 

high-level explanations.

Limitations
● BERT token limit: Inputs longer than 512 tokens must be chunked, leading to a 

loss of contextual continuity and reduced classification accuracy.
● Language Bias: Classification in languages other than English is not supported.
● Static Data: Outdated training data may not reflect modern phishing tactics.

Future Work
● Broader Datasets: Current datasets are skewed toward specific message types 

(e.g., emails or SMS), limiting the model’s generalizability. Future efforts should 
aim to collect more diverse, cross-platform phishing data.

● Model Diversification and Optimization: Future experiments could explore 
alternative NLP architectures, such as RoBERTa, DistilBERT, or domain-specific 
transformers, to improve accuracy, speed, or resource efficiency.

● Deployment: The usability and impact of PhishFence can be further enhanced 
by developing a browser extension, mobile app, or API. Broadening public 
access would strengthen its role in combating real-world threats.
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Fig. 2: PhishFence pipeline.

Model (with TF-IDF) Accuracy Precision Recall F1-Score

MLP Classifier 98.2% 98.2% 98.4% 0.983

Logistic Regression 98.0% 97.9% 98.4% 0.981

Random Forest 97.5% 98.0% 97.3% 0.976

Multinomial Naive Bayes 93.1% 98.0% 88.6% 0.931

Table 1: The MLP model outperforms other models in all metrics.

Model (with SBERT) Accuracy Precision Recall F1-Score

MLP Classifier 98.1% 98.4% 97.9% 0.982

Logistic Regression  95.5%  97.5%  93.8%  0.956

Random Forest  95.1%  95.3%  95.3%  0.953

Gaussian Naive Bayes  89.0%  92.1%  86.4%  0.892

Table 2: Model performance generally decreases with SBERT text encodings.

Model Accuracy Precision Recall F1-Score

bert-base-uncased 99.27% 99.35% 99.26% 0.993

bert-large-uncased 99.31% 99.27% 99.40% 0.993

Table 3: The bert-large-uncased and bert-base-uncased models have similar performance.

External Links

References Source CodeAppendices

Fig. 1: While phishing rates have decreased, they are 
still many times higher than they were 7 years ago.

Fig. 3: Aggregated SHAP results for a random sample of emails.


