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Introduction

Phishing Attacks and Emails
® Phishing consists of approximately 25% of all internet crime complaints.
® Phishing attacks caused over $70 million in losses in 2024 alone.
e Nearly half of all cyber attacks involve some type of phishing attack.
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Goals
e Develop a phishing detection
pipeline that matches the
accuracy of current models
while enhancing explainability.
® Produce a front-end interface for users to submit emails for classification,
providing real-time feedback and recommendations.
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Fig. 1: While phishing rates have decreased, they are
still many times higher than they were 7 years ago.

Data Sources and Preprocessing
e Combine six partially-processed public datasets
® Remove extraneous columns, drop invalid rows, and reprocess for additional
summary statistics (i.e., word count, URL count, etc.)
e Remove stopwords & special characters for natural language processing

Vectorization and Text Embedding Techniques
Text Frequency-Inverse Document Frequency (TF-IDF)
e Considers word frequency in a document and rarity across the dataset
e Efficient, but ignores word order and context; poor at semantics
Sentence-BERT (SBERT)
e Densely vectorizes documents using a pre-trained BERT model
e Strong contextualization, but computationally heavy
® Requires chunk-and-pool document embedding due to a 512 token limit

Evaluating Classification Models

® MLP Classifier: Neural network approach; accurate but slow.
Logistic Regression: Simple mathematical approach; accurate and fast.
Random Forest: Many decision trees; acceptable accuracy but slow.
Multinomial/Gaussian Naive Bayes: Naive NLP approach; quick but inaccurate.
BERT Classifier: Fine-tuned version of a pre-trained BERT model and tokenizer;
captures textual nuance and context; slowest to train but highly accurate.

Model (with TF-IDF) Accuracy Precision Recall F1-Score
MLP Classifier 98.2% 98.2% 98.4% 0.983
Logistic Regression 98.0% 97.9% 98.4% 0.981
Random Forest 97.5% 98.0% 97.3% 0.976
Multinomial Naive Bayes 93.1% 98.0% 88.6% 0.931
Table 1: The MLP model outperforms other models in all metrics.
Model (with SBERT) Accuracy Precision Recall F1-Score
MLP Classifier 98.1% 98.4% 97.9% 0.982
Logistic Regression 95.5% 97.5% 93.8% 0.956
Random Forest 95.1% 95.3% 95.3% 0.953
Gaussian Naive Bayes 89.0% 92.1% 86.4% 0.892

Table 2: Model performance generally decreases with SBERT text encodings.

Model Accuracy Precision Recall F1-Score
bert-base-uncased 99.27% 99.35% 99.26% 0.993
bert-large-uncased 99.31% 99.27% 99.40% 0.993

Table 3: The bert-1large-uncased and bert-base-uncased models have similar performance.

Findings
e TF-IDF outperforms SBERT vectorization with simpler models.
e BERT outperforms simpler models regardless of vectorization techniques.
e SHAP combined with LLMs can be effectively used to create approachable,
high-level explanations.

Limitations
® BERT token limit: Inputs longer than 512 tokens must be chunked, leading to a
loss of contextual continuity and reduced classification accuracy.
® [anguage Bias: Classification in languages other than English is not supported.
e Static Data: Outdated training data may not reflect modern phishing tactics.

Future Work

® Broader Datasets: Current datasets are skewed toward specific message types
(e.g., emails or SMS), limiting the model’s generalizability. Future efforts should
aim to collect more diverse, cross-platform phishing data.

® Model Diversification and Optimization: Future experiments could explore
alternative NLP architectures, such as RoBERTa, DistilBERT, or domain-specific
transformers, to improve accuracy, speed, or resource efficiency.

® Deployment: The usability and impact of PhishFence can be further enhanced
by developing a browser extension, mobile app, or APIl. Broadening public
access would strengthen its role in combating real-world threats.
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Fig. 2: PhishFence pipeline.
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Fig. 3: Aggregated SHAP results for a random sample of emails.
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