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Ocean currents play a vital role in climate regulation,
marine ecosystems, and pollutant transport

Previous research has used ocean drifter data to
model large-scale current patterns, but few have
addressed the detection of localized anomalies in
real time
Studies have shown that changes in drifter
trajectories can reflect external disturbances like
cyclones, eddies, or oil spills 
However, most existing work focuses on trajectory
forecasting, not anomaly detection without labels
We hypothesize that analyzing drifter paths over
time can reveal sensor errors and environmental
anomalies, even when disruptions occur far from the
monitored region

Conclusions:
Deep learning models trained on
DBSCAN-labeled windows capture
temporal anomaly patterns.
CNN consistently outperforms LSTM on
F1 score. The 95% confidence interval
excludes zero, indicating a statistically
significant advantage for CNN.
RAID recovery and compression
methods improve data robustness and
energy efficiency
Increased anomalies during Deepwater
Horizon event suggest detection of
environmental disruptions far from the
spill zone

Limitations:
No ground truth due to labels from
unsupervised DBSCAN 
Limited scope: Study focuses on U.S.
West Coast
RAID/compression assumptions: Assume
structured loss and smooth trajectories

Future Work:
Expand detection to global ocean
datasets
Add environmental inputs like
temperature, salinity, and satellite
imagery
Explore the performance of BiLSTM
compared to current models of CNN and
LSTM
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Figure 7. Original (circles) and
recovered (crosses, dashed) GPS
trajectories for 5 drifters over 20 steps.
Data encoded with Reed-Solomon and
5 dropout rows corrupted. Recovery
yields zero reconstruction MSE.

Figure 6. Histogram of gzip compression
ratios (raw to delta-encoded) per
drifter, averaging 0.84, showing delta
encoding reduces compressed size by
~16%, enabling estimated energy
savings of 27% during transmission.
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Figure 3. DBSCAN-based anomaly detection on ocean drifter data. Left: Overall
results show anamoly points (red) separated from normal trajectories (blue) across

all drifters. Right: Example of a single drifter.

Figure 4. Confusion matrices for CNN and LSTM models. Top: Results on 2023 data;
Bottom: results on 2010 data. Each plot shows true vs. predicted labels for normal vs.
anomaly classifications. The 2010 confusion matrices show an increase in true positive

anomaly predictions. CNN outperforms across all entries of the confusion matrix.

Figure 5. Bar graphs and bootstrap distributions for CNN and LSTM models. 
Top: Results on 2023 data; Bottom: results on 2010 data. CNN demonstrates superior
average performance across 10 runs, as shown in the summary bar charts. The 95%

confidence interval for the difference in F1 scores (CNN – LSTM) excludes 0,
indicating a statistically significant advantage for the CNN model. 

Figure 2. Flowchart of entire methodology

Figure 1. Global ocean currents
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