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Introduction

Mesolimbic Pathway
e Reqgulates reward processing in the brain
e Signal generation in the Ventral Tegmental Area (VTA)

Objectives Biophysical Model
e Simulate a hybrid biophygica| and reinforcement e 100 simulated neurons (50 VTA, 50 NAC) in NEURON framework
e Membrane Dynamics Equation
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* Modulate activity in the mesolimbic pathway ionic, synaptic, and external currents. Through variations of i
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equlated by the body v o Reloase Reinforcement Learning (RL) Model e PyTorch framework for model support
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e Approaches zero as brain matches expected with actual

Results

Part 1: Biophysical Model Output Part 2: Reinforcement Learning Output
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Conclusions
e The biophysical model found that, during the MOR activation period, there

Limitations/Future Steps
e A one to one correlation between opioid levels and “actual
reward” levels is not accurate
o The actual correlation is more complex

were:
o Elevated VTA and NAc dopaminergic neuron amplitude and rate of firing

levels
o |Increased synaptic and extrasynaptic dopamine release * Low quantity of neurons
e RL model showcased how increased MOR and dopaminergic activity leads to: ° Our models work with merely 100 neurons, which does not ACknOWIGdgements
o An immediate increase in expected reward perception reflect the ~100 billion neurons in the human brain
o A positive RPE, triggering a desire for more opioid consumption o A general influx of opioids into the simulation was the input We would like to thank the BU RISE program
Applications = The model does not utilize a specific class of opioids: for this incredible opportunity. We would also
e Potential development of pharmacological interventions targeting specific different opioids will likely have diverse effects on RPE like to thank Karla Montejo, Shankar
components of the pathway or modeled biological mechanisms o Not all human behavioral aspects were accounted for Ramachandran, and the teaching fellows for
e Our model helps explain how opioids distort reward processing through the = Other factors affecting mesolimbic pathway and RPE their support and guidance throughout our
mesolimbic pathway, encouraging future opioid consumption e Baseline data does not reflect natural levels of opioids and research. Lastly, we would like to thank our
e Further development of this model could help personalize strategies for normal dopaminergic neuron firing in a healthy individual families for supporting us and providing us with
individual differences in opioid levels, dopaminergic activity, or RPEs the opportunity to attend this program.




