
● Optimal Transport (OT) is a well-studied optimization problem with applications through machine 
learning (domain adaptation, resource allocation, etc.)
○ OT seeks to minimize the cost of transporting mass between two probability distributions. In other 

words, OT seeks to minimize

           

● We introduce a new algorithm to approximate OT in O(nlogΔ) space, an improvement upon 
Sinkhorn, by grouping points using a Hierarchically Well-Separated Tree Embedding (HST), while 
accomodating aforementioned limitations.
○ We test the algorithm's efficiency and accuracy on several synthetic datasets, in addition to 

comparing it with Sinkhorn

 where          and P is a matrix representing mass 
transfer [1]
● Sinkhorn, the most widely used OT algorithm, utilizes 

entropic regularization to efficiently compute an 
approximate solution in O(n²) time [2]
○ Sinkhorn must store the entire transport matrix in 

memory, however, using O(n²) space
● Hierarchical Refinement (HiRef) attempts to solve this by 

grouping points in bijective couplings, but relies on several 
restrictive assumptions, limiting its applicability despite 
using O(n) space [3]
○ Assumes same number of source and target points that 

all have equal weight, does not permit mass splitting
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Introduction

Theoretical Results
● Space: Our algorithm avoids instantiating a cost matrix and instead utilize a tree, which contains 

every point in each of O(logΔ) layers, resulting in O(nlogΔ) space complexity
● Time: The time bottleneck of the algorithm is generating the FRT tree, which runs in O(n²) time.
● Accuracy: By using an FRT tree approximation, we incur a distortion of O(logn) such that 

however, we demonstrate through tests that the average error within the cost approximation is 
significantly less than O(logn)

Empirical Results

Fig. 3 (right): Space comparison between EMD, Sinkhorn, 
and our algorithm. EMD and Sinkhorn both use quadratic 
space, while our algorithm runs with significantly less 
speed. 

Fig. 4 (bottom-left): Accuracy comparison between EMD, 
Sinkhorn, and our algorithm. Our algorithm provides a less 
accurate approximate than Sinkhorn, but when compared 
to actual costs (EMD), both algorithms' errors increase at 
the same rate.

Fig. 5 (bottom-right): Time comparison between EMD, 
Sinkhorn, and our algorithm. Our algorithm and Sinkhorn 
have comparable runtime. EMD has a cubic time 
complexity and is typically signficantly slower in 
comparison, except in this case POT's EMD algorithm is 
implemented in C++ while Sinkhorn and ours are written 
in python, resulting in faster runtime.

Note: In Fig 3, 4, and 5,
each algorithm was 
ran on 10 different 
randomly generated 
point clouds and 
weights, and the 
resulting measures 
were subsequently 
averaged to obtain 
means and standard
deviations on the 
figures.

Results

Algorithm
Our algorithm begins by generating an FRT Tree Embedding [4] for the data points, with 
the following modifications: 
● If a node is only associated with one point, we stop generating its children and assign a 

difference value representing its weight
● After generating a node's children, remove the set of nodes it represents from memory
● Iterate over only node-represented points when generating its children, instead of every 

point
Then, we calculate the cost of optimal transport by pushing mass towards the root node on 
the tree and maximizing lower-cost matchings farther from the root node.

Comparison
● We compare our algorithm to Sinkhorn using the Python OT library with ε = 0.04 × 

mean(C)
● We test on a point cloud of n uniformly sampled source and target points with random 

Gaussian weights.
● We use the Earth Mover's Distance (EMD) as a baseline for approximation measurement

Algorithm/Methods

Discussion
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Our algorithm attains a significantly lower space complexity but sacrifices accuracy when 
compared to Sinkhorn. Both algorithms have comparable speed.

Extensions
Unlike HiRef, our algorithm does not make restrictive assumptions about the data points 
and therefore can be applied to
● Partial Optimal Transport

○ If the source and target weights are not equivalent, leftover mass will be represented 
at the root node

● Non-Euclidean distance metrics
○ Does not rely on Euclidean distance, algorithm can be applied to other metrics as well

Future Work
● On some datasets (i.e. moon and blob), FRT may generate a tree with source and target 

points completely grouped together
○ Modifications could be made to FRT to avoid non-ideal groupings

● Testing on non-synthetic datasets

Fig. 2 (right): FRT Tree Embedding algorithm ran on a small two 
moons dataset. FRT greedily groups points using the ball 
function, as demonstrated by the middle image. The resulting 
tree (bottom image) groups nearby points into clusters with low 
inter-transport costs.

Fig 1: Possible optimal transport on system with 
three source points and three target points


