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Introduction Algorithm/Methods

e Optimal Transport (OT) is a well-studied optimization problem with applications through machine Algorithm
learning (domain adaptation, resource allocation, etc.) Our algorithm begins by generating an FRT Tree Embedding [4] for the data points, with
o OT seeks to minimize the cost of transporting mass between two probability distributions. In other the following modifications:
words, OT seeks to minimize min <07 P> () v(y1) e |f a node is only associated with one point, we stop generating its children and assign a

difference value representing its weight
e After generating a node's children, remove the set of nodes it represents from memory
e |[terate over only hode-represented points when generating its children, instead of every
point
Then, we calculate the cost of optimal transport by pushing mass towards the root node on
the tree and maximizing lower-cost matchings farther from the root node.

PERan
where C € R™*"™ and P is a matrix representing mass

transfer [1]

e Sinkhorn, the most widely used OT algorithm, utilizes
entropic regularization to efficiently compute an
approximate solution in O(n?) time [2]

o Sinkhorn must store the entire transport matrix in
memory, however, using Ofn?) space

e Hierarchical Refinement (HiRef) attempts to solve this by
grouping points in bijective couplings, but relies on several
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Algorithm 2 Mass-Pushing Cost Calculation -
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1: procedure CALCULATE_COST(node, ) T 1= v ®
2: if node.branches # @ then 041

— : imiti : licability d : 3 sourceSet < { b € node.branches | b.difference > 0}
restrictive assumptions, limiting its applicability despite " targetSet < { b € node.branches | b.difference < 0} Sl . .
using O(n) space [3] 5: totalMass < min(}_s.difference, }(—t.difference)) 02 . . _
o Assumes same number of source and target points that Fig 1: Possible optimal transport on system with . deferred < ]
: : _ three source points and three target points 7 for all p; € sourceSet do osl__ < + = * = -+ +
all have equal weight, does not permit mass splitting N for all p; € targetSet do
o We introduce a new algor.lthm tg apprgmmatg OT in OfnlogA) space, an |mprovement upon o mass’ « totalMass X (Pl-dlffere;lcte) o (—Pzt-dlffetrsentce) ¢
Sinkhorn, by grouping points using a Hierarchically Well-Separated Tree Embedding (HST), while 2 sourcese ) targetse
’ . 2T 10: deferred.append(p;, po, mass’)
accomodating aforementioned limitations. - forall (g, ns,m) € deferred do
o We test the algorithm's efficiency and accuracy on several synthetic datasets, in addition to 12: if p1.leaf A p;.leaf then
comparing it with Sinkhorn 13: node.cost <— node.cost + distrt[p], 7t[pa] xm
14: p1.difference < p.difference — m w91
15: p».difference < p,.difference + m i
16: else if p;.branch A pj.leaf then
17: p».difference < p,.difference + m a0 —
Resu Its 18: PUSH_MASS(Pl, m, true, P2, 7T) e = tiiilifigiii
19: else if py.branch A pj.leaf then T e
20: p;.difference <+ p;.difference — m 4 =
. 21: PUSH_MASS(p,, m, false, p{, T s
Theoretical Results . else (2 P 70 - = : 1 : :
e Space: Our algorithm avoids instantiating a cost matrix and instead utilize a tree, which contains 23: node.cost < node.cost + PUSH_MASS_BETWEEN(node
every point in each of OflogA) layers, resulting in Of(nlogA) space complexity Zl,Pz,m, 7)
: . : : : : : : 21 & 24: for all b € node.branches do
e Time: The time pottleneck of the algorl.thm.ls gene.ratmg the FRT tree, which runs in Ofn?) time. ’s. CALCULATE_COST(b, 70
e Accuracy: By using an FRT tree approximation, we incur a distortion of Oflogn) such that
E [CT (u, 7))] < O(log n)c(u, '0) Fig. 2 (right): FRT Tree Embedding algorithm ran on a small two

moons dataset. FRT greedily groups points using the ball
, L function, as demonstrated by the middle image. The resulting
S|gmﬂcantly less than O(Iogn) tree (bottom image) groups nearby points into clusters with low

inter-transport costs.

however, we demonstrate through tests that the average error within the cost approximation is

Method Time Space Loss Caveats
EMD O(n’logn) O(n?) ~ 0 Computationally expensive.
Sinkhorn | O(n?/¢?) O(n?) < +e¢ ¢ — 0 incurs instability /slowdown. Comparison
HiRef O(nlogn) O(n) ~ 0 Only solves for Monge maps. e \We compare our algorithm to Sinkhorn using the Python OT library with € = 0.04 x
HSTOT O(n?) O(nlogA) | < xO(logn) | Inaccurate for certain datasets. mean(C)
Table 1: Comparison of OT algorithms. e We test on a point cloud of n uniformly sampled source and target points with random
Gaussian weights.
Empirical Results Space (MB) per number of points for EMD, Sinkhorn, and HSTOT e \We use the Earth Mover's Distance (EMD) as a baseline for approximation measurement
Fig. 3 (right): Space comparison between EMD, Sinkhorn, s00d EM[k)h
and our algorithm. EMD and Sinkhorn both use quadratic I fI';TO_?m ® ®
space, while our algorithm runs with significantly less DISCUSSIO n
speed. 500 -
Fig. 4 (bottom-left): Accuracy comparison between EMD, 255 Our algorithm attains a significantly lower space complexity but sacrifices accuracy when

Sinkhorn, and our algorithm. Our algorithm provides a less compared to Sinkhorn. Both algorithms have comparable speed.
accurate approximate than Sinkhorn, but when compared

to actual costs (EMD), both algorithms' errors increase at
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the same rate. Extgnspns . o . .
200 - Unlike HiRef, our algorithm does not make restrictive assumptions about the data points
Fig. 5 (bottom-right): Time comparison between EMD, and therefore can be applied to
Sinkhorn, and our algorithm. Our algorithm and Sinkhorn : .
! . . | e Partial Optimal Transport
have comparable runtime. EMD has a cubic time k0L P P . . .
complexity and is typically signficantly slower in — LA~ o If the source and target weights are not equivalent, leftover mass will be represented
comparison, except in this case POT's EMD algorithm is 0 - at the root node
Implemented in C++ while Sinkhorn and ours are written ' ' - - ' ' - - ' : : :
b o . 0 1000 2000 3000 4000 5000 6000 7000 8000 e Non-Euclidean distance metrics
INn python, resulting in faster runtime. Number of boint : : : : :
umber of points o Does not rely on Euclidean distance, algorithm can be applied to other metrics as well
Future Work

Cost per number of points for EMD, Sinkhorn, and HSTOT Time (s) per number of points for EMD, Sinkhorn, and HSTOT ® On some datasets (i.e. moon and blob) FRT may generate a tree With source and ta rget

Note: In Fig 3, 4,and 5 1 — EMD — EMD :
OLS: M FII =3 aNdS, - S T nknom Ihkhar points completely grouped together
h al h

each algorithm was i HSTOT 1 heToT

o Modifications could be made to FRT to avoid non-ideal groupings
e Testing on non-synthetic datasets

ran on 10 different 2000 -
randomly generated
point clouds and
weights, and the
resulting measures
were subsequently
averaged to obtain
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