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Introduction Methods

Finding Initial Set
e Sclected Picture Vocabulary prompts that are included in the MAB-CDI (MacArthur-Bates Communicative

e Vision-language models (VLMS) are

models that take text and visual input . 1
P Development Inventories) °, a baby-level vocabulary database

o Usually require a huge amount of data

e Used Large Language Models such as ChatGPT to generate baby-level labels for the three distractor images

and computing resources to train e Matched prompts from Picture Vocabulary and generated labels to SAYCam annotations, a video dataset of

® [n comparison, babies develop visual babies aged 6-32 months daily activities *

learning skills quickly with little input e Used GroundingDINO and ChatGPT with open-source object detection models to generate pre labels and extract
e Recent studies introduced baby-level object croppings from relevant SAY Cam frames

frameworks to train VLMs with more e Manually screened images at each step to ensure quality of the resulting problem sets
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efficiency Creating New Test Sets

e Found distractors that semantically, categorically, and

o Existing benchmarks are mostly designed
for large-scale models and don’t align
with testing baby-level VLMs

e Targeted fundamental skills of cognitive and

phonologically similar to the target word

o Semantical: CLIP (Contrastive Language—Image

Pretraining) Similarity Scoring

language development by adapting NIH o Categorical: K-Means clustering algorithm over CLIP
Baby Toolbox Tasks for testing VLMs *

o Standardized tool for assessing cognitive

embeddings

o Phonological: Soundex algorithm
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Vocabulary Test Figure 2: Manual Screening Interface

o A word 1s verbally given to the child who
has to match it to one of four images

Instructional Prompt:

Prompt: Banana

Airplane

' | Extracted from SAYCam Original Problem Extracted from SAYCam Original Problem
— Figure 3: Examples of gathered initial test samples
Generated Problems: Generated Problems Original Problems (Baby-Level)
Figure 1: Example test question from Total questions: 409 Unrelated: 24.78% | Semantic: 15.08% | Unrelated: 25.64% | Semantic: 14.72%
NIH Baby Toolbox Total distractors: 1227 Phonological: 2.85% |Category: 57.29% |Phonological:  3.21% |Category: 56.43%
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e Improve annotations on original SAY Cam dataset

e Develop ways to automate matching and extracting problems better to skip manual screening

at each stage

Refine method for finding new distractors to increase effectiveness

o Some selected categorical distractors lack clear categorical relevance to the ground truth
(eg., “album™ and “crisp” for ground truth “man”

o Phonological distractors often do not have enough sound similarity to the ground truth

o Develop a more targeted algorithm for assigning distractor types to each target word, as
some words may be better suited for certain types based on their linguistic properties
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