An Exploration of the Residue Number System in Neural Networks

Sonali Srikanth^{1,2}, Cansu Demikiran², Ajay Joshi²

Liberal Arts and Science Academy, 1012 Arthur Stiles Road Austin, TX 787211; Boston University, Department of Electrical and Computer Engineering, 8 St Mary's St, Boston, MA 022152

Abstract

BOSTON

UNIVERSITY

• The Residue Number System (RNS) is based on moduli and remainders (called residues)

Hierarchical RNS (HRNS)

- Each residue from one "level" of RNS becomes a new "level" of RNS
- Same Moduli used for each level
- Reduces number of bits needed for operations

Conclusion

 RNS and HRNS can be used to perform computations for NN with in cases that require relatively low precision Can be applied to VLSI, Homomorphic encryption, and artificial intelligence • More work can be done to understand and incorporate the HRNS and/or Recursive RNS in Neural Networks and test efficiency

• Could significantly speed up emerging computation methods where numeric precision is limited • A hierarchical structure (HRNS) can help speed computations up further by exploiting its parallelism

- Operations (addition, multiplication) happen at the lowest level
- After operations, each output is taken through the lowest level moduli to avoid overflow
- Example for 3 levels: Chinese Remainder Theorem (CRT) must be used 13 times for multiplication
 - \circ 13 = 9 (level 3 to level 2) + 3 (level 2) to 1) +1 (level 1 to output)
 - Can have different number of levels or different number of moduli, changing CRT uses

Residue Number System (RNS)

Precision in Neural Networks

• Blue: RNS NN error in output vs # of Quantization and

Acknowledgements

I would like to thank Dr. Ajay Joshi for this opportunity to work in he ICSG lab, and Dr. Cansu Demirkiran for the constant support and guidance this summer.

- Represents a set of integers using coprime moduli
- (m = m1, m2, m3)
- Multiple low precision operations can combine to form a high precision operation
- Closed under addition and multiplication
- Doesn't require the carrying of digits in these operations

References

Moduli: [1023, 1024, 1025)