
RESULTS
Model Metrics
● Code Environment: Visual Studio Code
● Implementation: Python – Pytorch – Pytorch-Wavelets3

● GPU: NVIDIA A100/A4/L40S (depending on run)
● Loss: MSE + GradLoss + fMAE
● Wavelet Basis: db1 and db2
● Full-Width of Half-Maximum (FWHM) of PSF: 8.0
● Noise Level: 2.0

● Runtime With No Preprocessing Layer: 5hr 40min
● Runtime With Wavelet Filter*: 5hr 52min

*Calculated by averaging 6 runs with different hyperparameters 
(learning rate, scheduler, wavelet type, etc.)
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● Miniaturized microscopes (miniscopes) have a limited 
depth of field → the Tian Lab is developing an 
extended depth-of-field (EDoF) miniscope using deep 
learning and optics to view deeper into the brain1

● Issue: Images taken with miniscopes contain 
slow-varying background, due to fluorescence from 
out-of-focus planes and scattered light. High frequency 
noise is also introduced by the detection system.

● Wavelet Filter: Applies wavelets (small wave-like 
oscillations localized in time) as a high- and low-pass 
filters to separate and extract the low-frequency and 
high-frequency components of an image2

● Objective: Implement a wavelet filter in our end-to-end 
EDoF pipeline’s preprocessing steps to remove 
out-of-focus noise and background from our data
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Wavelet Filter Pipeline:

Wavelet Type: Sometimes, images were processed best with the db1 wavelet (shown 
below). Other times, images were processed best with the db2 wavelet.

Learning Rate Scheduler: The Cyclic Learning Rate Scheduler (causing the learning rate to cycle between 5e-9 and 5e-7 every 2000 epochs) performed 
the best across all loss metrics, achieving a total loss of 0.9809.

● Physical model’s weights were frozen → pre-trained    
weights were imported and model trained on weights in   
the reconstruction network

● Trained for 60,000 epochs and utilized three loss metrics: 
1) 1) Mean-squared error (MSE): ensure similarity 

between target and output
2) Gradient-based loss (GradLoss): ensure similar 

edges to retain neuron shapes
3) Fourier mean average error (fMAE): ensure similarity 

between Fourier domain of target and output

Stack of Neurons 
Sliced Across Z-Axis

Ground Truth Samples 
Summed Across Z-Axis

Output vs. Target

PSNR: 
20.96
SSIM: 
74.15
MSE: 
0.080

● Hyperparameter tuning shows that setting the FWHM of the PSF and the noise level as fixed values based on the optical system yields best results following the preprocessing layer
● The wavelet filter ensured that the model could converge fast and accurately by getting rid of the out-of-focus fluorescence background and noise, thereby encouraging it to focus training on 

the most important parts of the data with little significant increase in computational time
● Model performed best when wavelet filter outputted a stack of the unprocessed image, the image processed with the db1 wavelet, and the image processed with the db2 wavelet
● Future Directions:

○ Test Wavelet Filter with different combinations of wavelets to find the most optimal one: run more tests with the Symlet family because of its small support and use in denoising images
○ Improve loss metrics: focus on decreasing loss within the Fourier domain
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Validation Loss: MSE
– Cyclic Learning Rate Scheduler – Reduce Learning Rate on Plateau Scheduler – 

Multistep Learning Rate Scheduler – No Learning Rate Scheduler

Validation Loss: GradLoss
– Cyclic Learning Rate Scheduler – Reduce Learning Rate on Plateau Scheduler – 

Multistep Learning Rate Scheduler – No Learning Rate Scheduler

Validation Loss: fMAE
– Cyclic Learning Rate Scheduler – Reduce Learning Rate on Plateau Scheduler – 

Multistep Learning Rate Scheduler – No Learning Rate Scheduler

Total Validation Loss
– Cyclic Learning Rate Scheduler – Reduce Learning Rate on Plateau Scheduler – 

Multistep Learning Rate Scheduler – No Learning Rate Scheduler
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