
https://github.com/s-prshah/cache_eviction_simulation

Introduction Eviction Policies
Background

- The bufferpool is a region of the computer's RAM with limited space that stores the most
relevant, frequently accessed data files by a user

- Cache eviction policies are algorithms that are used to strategically determine which data
files to remove when the bufferpool is full and a new page is requested

- Present-day modern and classic policies such as ARC, FIFO, or LRU often face a trade-off
between efficiency and simplicity

- Adapting to more efficient eviction policies helps ensure optimal energy storage, minimum
cost, and the consistency of data files

Objective
- This research study explores a new implementation of the recently-discovered SIEVE policy

to determine future implications of SIEVE in various workloads
- The SIEVE implementation is compared to the implementations of LRU (classic policy) and

CLFRU (modern policy) to explore differences in performance metrics across workloads

Conclusions

- SIEVE performs significantly better (+9.57%) compared to LRU within larger environments that
encompass larger bufferpool/disk sizes (e.g., Buffer, Disk sizes of 80,000, 10^5)

- SIEVE and CFLRU have comparable hit rates in macroenvironments; however, CFLRU takes over 161
times the processing speed of SIEVE --> SIEVE is more efficient in HDDs

- SIEVE outperforms LRU in hit rate on write-heavy workloads (R/W = 10/90); however, it
underperforms when enacted in read-heavy workloads (R/W = 90/10)

Future Implications
- The SIEVE policy can be implemented in larger environments with a higher number of request

operations, which may improve long-term efficiency for cache eviction
- Implementing the SIEVE policy can be integral in write-heavy systems such as applications for logging

systems or financial transactions

I would like to thank my mentors Andy Huynh and Tarikul Islam
Papon, and Professor Manos Athanassoulis for their invaluable
guidance and support throughout this project. I would also like
to thank Boston University for the amazing experience I had
during my research.

Part 1: Implementing Cache Eviction Policies + Read/Write Simulator (C++)
- Implemented algorithms for CFLRU, LRU, and SIEVE using VS Code + WSL
- Implementation included workload generator, executor, and parameter prerequisite files which were

compiled using a Makefile under the target Buffermanager
- Executor included a simulation of fetching & executing read/write requests
- Each call to the Buffermanager generated metrics on the hit rate, miss rate, read IO, write IO, and policy

execution time

Part 2: Building a Compiler for Data Collection (Python)
- 2 Compilers: first compiler varied disk & bufferpool sizes & the number of page requests; second compiler

tracked metrics across algorithms resulting from different workload skews and read/write ratios
- Each compiler generated a CSV file with data sets for each combination of parameter values by calling

repeated requests on the Buffermanager through terminal command-prompts
- Incorporated Regex and Python Subprocess in compilers for parsing data
- Utilized Python libraries such as pandas & matplotlib in Jupyter Notebook for generated data visualization

[1] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon Lee. 2006.
CFLRU: a replacement algorithm for flash memory. In Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded systems (CASES '06).
Association for Computing Machinery, New York, NY, USA, 234–241.
https://doi.org/10.1145/1176760.1176789
[2] SIEVE: an Efficient Turn-Key Eviction Algorithm for Web Caches - SIEVE is simpler than LRU.
Github.io. https://cachemon.github.io/SIEVE-website/blog/2023/12/17/sieve-is-simpler-than-
lru/#sieve-is-beyond-an-eviction-algorithm (accessed 2024-07-02).
[3] Zhang, Y.; Yang, J.; Yue, Y.; Vigfusson, Y.; Rashmi, K. V. SIEVE Is Simpler than LRU: An Efficient
Turn-Key Eviction Algorithm for Web Caches. In Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24); 2023.

Methods

Acknowledgements

References

Results

Parameters

Figure 1: Least Recently Used (LRU) Policy Visualization

Figure 2: Clean-First Least Recently Used (CFLRU) Policy Visualization

Figure 3: SIEVE Policy Visualization

	Slide 1

