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Introduction Eviction Policies
Background

- The bufferpool is a region of the computer's RAM with limited space that stores the most 
relevant, frequently accessed data files by a user

- Cache eviction policies are algorithms that are used to strategically determine which data 
files to remove when the bufferpool is full and a new page is requested 

- Present-day modern and classic policies such as ARC, FIFO, or LRU often face a trade-off 
between efficiency and simplicity

- Adapting to more efficient eviction policies helps ensure optimal energy storage, minimum 
cost, and the consistency of data files

Objective
- This research study explores a new implementation of the recently-discovered SIEVE policy

to determine future implications of SIEVE in various workloads
- The SIEVE implementation is compared to the implementations of LRU (classic policy) and 

CLFRU (modern policy) to explore differences in performance metrics across workloads  

Conclusions

- SIEVE performs significantly better (+9.57%) compared to LRU within larger environments that   
encompass larger bufferpool/disk sizes (e.g., Buffer, Disk sizes of 80,000, 10^5)

- SIEVE and CFLRU have comparable hit rates in macroenvironments; however, CFLRU takes over 161 
times the processing speed of SIEVE --> SIEVE is more efficient in HDDs 

- SIEVE outperforms LRU in hit rate on write-heavy workloads (R/W = 10/90); however, it 
underperforms when enacted in read-heavy workloads (R/W = 90/10)

Future Implications
- The SIEVE policy can be implemented in larger environments with a higher number of request 

operations, which may improve long-term efficiency for cache eviction
- Implementing the SIEVE policy can be integral in write-heavy systems such as applications for logging 

systems or financial transactions
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Part 1: Implementing Cache Eviction Policies + Read/Write Simulator (C++)
- Implemented algorithms for CFLRU, LRU, and SIEVE using VS Code + WSL
- Implementation included workload generator, executor, and parameter prerequisite files which were 

compiled using a Makefile under the target Buffermanager
- Executor included a simulation of fetching & executing read/write requests 
- Each call to the Buffermanager generated metrics on the hit rate, miss rate, read IO, write IO, and policy 

execution time

Part 2: Building a Compiler for Data Collection (Python)
- 2 Compilers: first compiler varied disk & bufferpool sizes & the number of page requests; second compiler   

tracked metrics across algorithms resulting from different workload skews and read/write ratios 
- Each compiler generated a CSV file with data sets for each combination of parameter values by calling 

repeated requests on the Buffermanager through terminal command-prompts
- Incorporated Regex and Python Subprocess in compilers for parsing data 
- Utilized Python libraries such as pandas & matplotlib in Jupyter Notebook for generated data visualization
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Figure 1: Least Recently Used (LRU) Policy Visualization 

Figure 2:  Clean-First Least Recently Used (CFLRU) Policy Visualization 

Figure 3:  SIEVE Policy Visualization 
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