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Introduction
- With the growth of online advertising, advertisers are seeking more 

effective strategies to match ads with their target audiences
- This issue can be solved through the generalized assignment problem 

which aims to find the optimal connections between two sides of a 
bipartite graph

- There are two types of allocations to consider for our problem
- Online Ad Allocation: Impressions arrive one at a time with their 

valuations and need to be allocated immediately. 
- Offline Ad Allocation: All impressions and valuations are known 

before making allocations.
- While algorithms exist to solve this problem perfectly, they are not 

viable to run on large data sets due to their extreme run time
- We implemented one algorithms for each type of allocation with the 

goal of getting considerably close to the optimal solution while keeping 
a rapid performance.  

Methods
 Synthetic Instances

- Generates separate lists of advertisers, impressions and weights
- Every impression, i, receives a randomly generated type
- Each advertiser, a, gets a budget and valuation per impression type from an exponential distribution
- For every advertiser/impression connection, the type-based valuation is added to the weights array

 CVXOPT
- Convex optimization algorithm that returns a matrix of optimal allocations

 Online Algorithm (Alg. 1):

- Input: Robustness/consistency trade-off parameter α ϵ [1, ∞)
- For each a initialize βa ← 0
- For each i

- Evaluate expected advertiser using maxa{wai - βa} and find the predicted advertiser
- Assign a to max{αB (wa(PRD)i - βa(PRD)), wa(EXP)i - βa(EXP)}
- Allocate i to a and if a is over budget, remove the least valuable impression of a
- Update βa for a

- Output: Matrix of binary allocations

 Offline Algorithm (Alg. 2):
- Inputs: Values λ and ϵ, number of rounds R

- Assign priority score βa = (1 + ϵ)-R for all a
- For rounds R

- For all i in a: Update fractional allocation of i to a 
- For all a: If a is under or over budget then update βa 

- For all a over budget, remove least valuable i until budget is met
- Output: Matrix of fractional allocations

Results

Conclusion
 Fine-Tuning and Threshold Implementation:

- Using Fig. 2, we identified λ = 0.25 and ϵ = 0.21 as the optimal parameters for Alg 2
- Fig. 3 shows that the exponential average calculates the best allocations for Alg 1 

with a negligible time difference compared to the other threshold update methods

 Comparisons on Different Data Types:
- Alg. 1 and Alg. 2 consistently found nearly optimal solutions in a viable time for 

large data sets on synthetic and corrupted synthetic data.
- Fig. 6 shows Alg. 1 outperforming Alg. 2 on binary real-world data, highlighting the 

strength of Alg. 1’s binary allocations

 Future Work:
- Implement machine learning predictions rather than mathematical for Alg. 1 
- Utilize algorithms for other bipartite graph problems with similar constraints
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Fig 1. A bipartite graph outlining the nodes, edges and constraints of the ad allocation problem

wai: valuation of i for a         βa: threshold value for a         a(EXP): expected advertiser         a(PRD): predicted advertiser

 Testing:
- Fine-Tuning: We used a heatmap to find the optimal values of λ and ϵ for Alg. 2
- Threshold Implementation: We compared the objective value found and run time for 

an exponential average, uniform average, and lowest weight threshold for Alg. 1
- Overall Comparison: For each data type we compared the run time (in seconds) and 

objective value found on instances of various sizes
- Data Types: Each algorithm ran on synthetic instances, corrupted instances, and real 

world data from the Stanford Large Network Dataset Collection

Da,i,λ= βa⋅ e(w   - 1)/ λ

a’ = all a

If Σ Da,i,λ ≤ 1, allocate Da,i,λ
Else allocate Da,i,λ/ Σ Da,i,λ

a’

a’

a,i

  If Alloca ≤ ba / (1+ ϵ)
 then βa := (1+ ϵ)⋅ βa

 If Alloca ≥ (1+ ϵ)⋅ ba
 then βa := βa / (1+ ϵ)

Alloca = total i allocated to a
ba = budget of a

Fig 3. Graphs comparing the objective value and time taken for 
three separate Alg. 1 threshold calculations
(100 advertisers with increments of 100)
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Fig 5. Objective value and run time of Alg. 1 and Alg. 2
(50 advertisers with increments of 100)

Fig 7. Objective value and run time of Alg. 1 and Alg. 2 on 
corrupted synthetic data

(20 advertisers with increments of 100)

Fig 6. Objective value and run time of Alg. 1, Alg. 2, and CVPXOPT on 
real-world data from the Stanford Large Network Dataset Collection

(impressions determined by number of advertisers with increments of 3)

Fig 4. Objective value and run time of Alg. 1, Alg. 2, and 
CVXOPT 

(20 advertisers with increments of 10)

Fig 2. A heatmap displaying the objective value achieved 
through different combinations of epsilon and lambda 

(50 advertisers, 1000 impressions, and 50 rounds)
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