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RESULTS

Comparative Analysis and Enhancement of Online and 
Offline Optimization Algorithms for Ad Allocation

METHODSMETHODS
Synthetic Instances:

●We generate impressions with random types and advertisers with random budgets based on 

the instance size. Advertisers’ valuations for different impression types are sampled from an 

exponential distribution.

Algorithm 1 (Online) by Spaeh and Ene (2023) [1]:

●Input: bipartite graph of a, i, w, parameter α ∈ [1, ∞), advertiser budgets Ba ∈ ℕ.
Algorithm 2 (Offline) by Agrawal et al. (2018) [2]:

●Input: bipartite graph of a, i, r (weights), advertiser budgets Ca ∈ ℕ, parameter λ ∈ (0, ∞), 
parameter ε ∈ (0, 1), parameter R (number of rounds).

CVXOPT [3]:

●Linear program solver used to find optimal allocation for ad allocation graphs.

Objective Value:

●Sum of all allocated weights (total profit)—metric used to evaluate solution strength.

Testing:

●Corrupted Instances: ad allocation graphs with edges randomly removed or weights 

randomly scaled by large factors (type of synthetic instance).

●Real-world Data: data used and cleaned from Stanford Large Network Dataset Collection.

●Fine-tuning Parameters: we create an objective value heatmap to identify the strongest 

pairing of λ and ε for Algorithm 2 on synthetic instances of 50 advs and 1000 imps.

●Allocation Thresholds: we compare three methods of updating allocation thresholds for 

Algorithm 1: lowest weight, uniform weight average, exponential weight average.

●Comparison: we compare algorithms by obj value (performance) and time taken (efficiency)

METHODS
●In an increasingly commercial world, advertising is essential for promoting products and 

services to targeted audiences.

●The generalized assignment problem (GAP) is a well researched problem in this domain.

●The goal is to find the most profitable allocation of ad impressions to budget-constrained 

advertisers, given that advertisers value, or weigh, impressions differently based on user data.

●We implement and evaluate an online and offline ad allocation algorithm: 

● Online - impressions arrive in real-time and weights calculated from user data

● Offline - impressions, user information, and therefore weights known beforehand

●Our objective is to enhance both algorithms in terms of performance and efficiency and 

compare their effectiveness under various conditions.

●We analyze both algorithms using synthetic instances, corrupted instances, and real-world 

data from the Stanford Large Network Dataset Collection [4].

●We evaluate allocation thresholds, fine-tune parameters, and implement predictions.
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Fig 1. bipartite graph with advertisers, impressions, and weights

Algorithm 1:
- For each adv initialize βa ← 0 

- For each imp:
- Find expected adv via argmaxa{wai - βa} and find predicted adv using prediction method
- If αB(wa(PRD)i - βa(PRD)) ≥ (wa(EXP)i - βa(EXP)), select exp adv; else, select pred adv
- Allocate imp to adv and if adv over budget, remove adv’ least valuable impression

- Update βa ←                           for adv

Algorithm 2:
- Assign priority score βa = (1 + ϵ)-R for all advs

- For R rounds:
- For each imp: set allocation
- For each adv: update βa

- For all advs over budget: reduce least valuable imp until budget met

B := mina Ba, eB := (1 + 1 / B)B, and αB := B (eB
α/B − 

1)

Hyperparameter Tuning:

●Looking at Fig. 2, we identify that Alg. 2 performs best on instances of 50 advertisers and 1000 impressions with 

parameters λ = 0.25, ϵ = 0.21, R = 50.

●We use these values as approximations of ideal parameters for larger instances, since generating a heatmap for 

larger instances is highly inefficient.

Allocation Thresholds:

●Looking at Fig. 3, an exponential weight average is the best allocation threshold update method for Alg. 1.

Comparison:

●From Fig. 4 and 5, we see that Alg. 2 and Alg. 1 perform similarly on corrupted and synthetic data. However, in Fig 

6, Alg. 1 outperforms Alg. 2 on real-world data. This could be due to Alg. 2 returning a fractional allocation.

Future Work:

●Implement machine-learned predictions instead of current mathematical predictions in Alg 1.

CONCLUSION
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Fig 2. Objective value heatmap for tuning epsilon and lambda on 50 adv, 1000 
imp instances. Rounds = 50 for all epsilon and lambda combinations

Fig 3. Graph comparing different Alg. 1 allocation threshold update methods on 
instances of 100 advertisers and up to 10,000 impressions incrementing by 100

Fig 4. Graph comparing Alg. 1, Alg. 2, and CVXOPT on instances of 20 
advertisers and up to 400 impressions incrementing by 10

*Fig 5. Graph comparing Alg. 1 and Alg. 2 on large, corrupted instances of 50 
advertisers and up to 5,000 impressions incrementing by 100

**Fig 6. Graph comparing Alg. 1, Alg. 2, and CVXOPT on real-world 
instances of up to 60 advertisers incrementing by 3 and a 
predetermined number of impressions
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