Survival Analysis and Prediction of Discharge Outcomes of Ischemic **Stroke Patients Stratified by Hemorrhagic Transformation Subtype**

Lillian Yu^{1,4}, Jack Pohlmann^{2,5}, Ivy So Yeon Kim, MPH^{2,5}, Ben Brush, MD³, Katie Milos⁵, Michael Cronin⁴, Oluwafemi Balogun⁵, Stefanos Chatzidakis, MD³, Ethan Zhang, MS⁵, Benjamin Brush, MD³, Steve Feske, MD⁵, Emelia J. Benjamin, MD, ScM^{2,4}, Josée Dupuis, PhD^{2,4}, David M. Greer, MD, MA^{4,5}, Stelios M. Smirnakis, MD, PhD^{3,6,7}, Charlene J. Ong, MD, MPHS^{3,4,5,6}

Lynbrook High School, 1280 Johnson Ave, San Jose, CA 95129¹; Boston University School of Public Health, 715 Albany St, Boston, MA 02115³; Boston University School of Medicine, 85 E Concord St, Boston, MA 02118⁴; Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA 02118⁵; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115⁶; Department of Neurology, Jamaica Plain Veterans Administration Medical Center, 150 S Huntington Ave, Boston, MA 02130⁷

INTRODUCTION

- Between **30% to 40%** of all acute ischemic stroke patients develop hemorrhagic infarcts (HI), which lead to ruptures in cerebral blood vessels known as **hemorrhagic transformations (HT)**
- A major complication of HT is **life-threatening mass effect (LTME)**, which occurs in patients who suffer from a midline-shift (MLS) of greater than or equal to 5 mm or had a decompressive hemicraniectomy procedure
- HT can be categorized by severity into the following subtypes: **parenchymal**, petechial, or no hemorrhage

RESULTS

<u>Survival Analysis: Log-Rank tests on Kaplan Meier Curves</u>

Comparing survival and time to event probabilities stratified by HT subtype:

- χ2 = 4.9 (df = 2), p= 0.08 for time to **Death Discharge**
- χ2 = 6.1 (df = 2), p= 0.05 for time to **Cerebral Edema Death Discharge** χ2 = 107 (df = 2), p < 0.01 for time to LTME

Characteristic	HR^{1}	95% CI ¹	p-value
HT subtype			
0			
1	1.82	1.39, 2.38	<0.001
2	3.86	2.94, 5.06	<0.001
¹ HR = Hazard Ra	atio, CI	= Confidence	e Interval

by HT Subtype

- Prior studies have analyzed variables of patients who had LTME and HT, but they do not group the patients on when LTME had occurred
- This study accounts for when LTME does occur in a patient when conducting analysis

Fig 1. CT Scan of patient with Petechial Hemorrhhage and MLS of more than 11 mm

- *B, CT with HI type 2 of right striatum.*
- *C, CT with parenchymal hematoma (PH) type 1 in right posterior cerebral artery territory. D, CT with extended PH type 2 of left basal* ganglia, capsula interna and externa with additional blood in both lateral ventricles and mass effect causing a shift of midline structures to the right.

Sourced from von Kummer R, et al.¹

Note: data was treated as right censored for patients who met their discharge time and no longer followed

Strata 🕂 no LTME 🕂 LTME

• χ2 = 5.7 (df = 1), p= 0.02 for time to Death

Discharge

• χ2 = 31.4 (df = 1), p< 0.01 for time to Cerebral

Edema Death by Discharge

Fig 8. Days to Death Discharge of Patients Stratified by LTME

Random Forest Models

Validation on BMC dataset:

85.24% Accuracy for determining death at discharge Confusion matrix Prediction Class error True 0 129 0.02 3

24

27 0.47

Value

Cohort

Fig 9. Average Glucose Levels at Admission

Fig 10. Density Estimation Plot for White Blood Cell

- This retrospective study involves **922 patients** admitted to Massachusetts General Brigham hospitals from 2006 - 2021 who suffered from ischemic strokes [Fig 3.]
- Stratified based on HT subtypes, the primary predictor of interest
- Missing data values were imputed via multiple imputation chain equations
- **Primary outcome of interest**: Death by Discharge; Secondary outcome of **interest**: LTME (after admission) and Status at Discharge

- Kaplan-Meier, Log-rank Tests, and Cox Proportional-Hazards Models were employed to determine how HT subtypes and LTME influenced different time to events and survival probabilities.
- Supervised machine learning classification and feature selection models Random Forests and K-Nearest Neighbor (KNN) algorithms were trained to take into account confounding biomarkers and risk factors revealed from univariate logistic regression analyses
- Secondary cohort of 183 patients used as validation group for the ML models
 - Patients were admitted to Boston Medical Center from 2006 to 2022 identified as having NIHSS greater than or equal to 15

CONCLUSIONS/DISCUSSION

• There is evidence of a difference in time to events for parenchymal hemorrhage patients compared to petechial hemorrhage patients for death by discharge, cerebral edema death by discharge and LTME

K- Value

- Most significant predictors for LTME and HT include age, glucose levels at admission and white blood cell count at admission
 - Results agrees with Marsh EB, et al.², however prior anticoagulation does not appear to be associated with HT as Marsh EB, et al.² results suggest (more specifically warfarin)
- Glucose levels at admission may be potentially confounded by diabetic and non-diabetic patients; therefore we consider HbA1C (average blood glucose levels measured across a period of 3 months) to account for the **differing glucose levels in diabetic patients**
 - Further study into **longitudinal trends** of glucose levels may improve predictions and associations between glucose levels and HT subtype
- The success of the trained Random Forest and KNN models on classifying patient outcomes beyond the primary cohort serves as a indicator that results **may be generalized** to Ischemic stroke patient populations that had large MCA strokes, provided further training and testing

References

1. von Kummer R, Broderick JP, Campbell BCV, et al. The Heidelberg Bleeding Classification: Classification of Bleeding Events After Ischemic Stroke and Reperfusion Therapy. Stroke. 2015;46(10):2981-2986. doi:10.1161/STROKEAHA.115.010049 2. Marsh EB, Llinas RH, Schneider ALC, Hillis AE, Lawrence E, Dziedzic P, Gottesman RF. Predicting Hemorrhagic Transformation of Acute Ischemic Stroke: Prospective Validation of the HeRS Score. Medicine (Baltimore). 2016 Jan;95(2):e2430. doi: 10.1097/MD.000000000002430. PMID: 26765425; PMCID: PMC4718251.

Acknowledgements

I would like to express my sincerest appreciation to my direct mentor, Jack Pohlmann, and Dr. Charlene Ong for their guidance and encouragement throughout my research process. I would also like to thank Mickey Cronin and the rest of the Ong Lab for all their support.