
Bill Wang1,2, Yancheng Zhu2, Sean Andersson2

Bergen County Technical Schools - Teterboro, 504 US-46, Teterboro, NJ1; Boston University, Boston, MA2

Generating a Map of the Environment With a 
GMapping and Hector Mapping SLAM Robot

Introduction
To navigate through an environment, a robot needs to recognize its 

surroundings and know its location. In an unknown environment, the 
robot does not have either, and needs to generate a map of its 
surroundings while simultaneously determining its location. However, 
to generate the map, the robot requires its location, but to acquire its 
location, the robot needs the map. Simultaneous Localization And 
Mapping (SLAM) algorithms tackle this problem by approximating the 
solution, allowing robots to navigate through new environments more 
easily. This project focuses on the GMapping and Hector Mapping 
algorithm.

The goal is to create a robot capable of generating a map using SLAM 
algorithms. The GMapping algorithm requires laser scan and odometry 
data to generate a 2D grid map of the environment and use that to 
approximate the robot’s new location. Laser scan data is a 2D plane of 
points that represent the distance of the sensor’s surroundings. 
Odometry is an estimate of a robot’s change in position over time, 
obtained by wheel encoders, accelerometers, or in this case, motion 
tracking. However, odometry data tends to drift over time, hence why 
SLAM is required to more precisely determine the robot’s position. 
Hector Mapping, on the other hand, only requires laser scan data.

Robot Operating System (ROS) is an open source software 
framework that serves as a middleman between a computer and the 
robot. It is built on nodes that can publish and receive data and process 
it, such as a SLAM node receiving sensor data and publishing a map.

Results
Maps were generated using both Hector Mapping and GMapping SLAM algorithms. See figures 1 and 2.
Hector mapping, because it only requires laser scan data, was used to test the scanner to ensure it was 
sufficient to use in a SLAM algorithm. The LIDAR could be held and moved around manually to map the 
environment. GMapping required odometry data, so a handheld test was not possible. While both the 
GMapping and Hector Mapping algorithms were able to capture the shape of the environment, the results 
highlighted differences between the two, as seen in figure 1. GMapping requires more data, but the resulting 
map is more crisp. The Hector map’s edges were less precise in comparison, and there is also an artifact at the 
lower right corner of figure 1. Hector Mapping proved much easier to implement, as it did not require the 
motion capture system in order to generate a map. However, if precision is more important, then GMapping is 
preferable.

Discussion/Conclusion
Further tests could compare other SLAM algorithms, or determine how much data is required to 

sufficiently map an area. With the robot unmoving in an enclosed environment, it was able to generate a 

map with the data virtually unchanging. This suggests that by just using a single scan, a SLAM algorithm 

may be able to generate a nearly complete map of the surroundings within its line of sight.

A limitation of this implementation, specifically the connection between the computer and Raspberry Pi 

with the Scanse Sweep sensor, was the delay. The Scanse Sweep had a noticeable delay between laser 

scans, which were problematic when the smart car moved too fast. This issue was exacerbated by the 

delay of the signal traveling from the Raspberry Pi to the laptop, which confused the SLAM algorithms into 

interpreting the laser scan as being from another location than it actually was, causing offset overlapping 

maps to be generated.

Acknowledgements
I would like to thank the wonderful people at the lab for always 
answering my questions, giving support, and providing the 
necessary materials. I would also like to thank the RISE program 
for making all of this possible.

Figure 2: A Hector map of a room compared to ground 
truth, mapped by manually moving the LIDAR around

Methods

Software
- Robot Operating System 

(Kinetic Kame 

Distribution)

- Ubuntu 16.04 Mate 

(Raspberry Pi)

- Ubuntu 16.04 (Laptop)

- Freenove Smart Car 

library

- Motive (OptiTrack 

software)

- Teraranger ROS library

- Sweep ROS library

- Hector Mapping

- GMapping

- VRPN Client

- Husarnet

ROS is used to run the SLAM algorithms. A laptop and the Raspberry Pi were connected via Husarnet, a ROS 

compatible peer-to-peer VPN, which allowed one ROS session to run across both computers. The Freenove car 

body has four motion capture markers, two batteries, and the Raspberry Pi attached to the frame. The 

Raspberry Pi ran a server that allowed a smartphone to remotely control the car and a node to run the sensor. 

The laptop ran the SLAM algorithms, a few nodes to allow compatibility, and the VRPN client, which 

communicates with OptiTrack (motion capture). The compatibility nodes included ones that converted 

pointcloud data from the LIDAR to laser scan data, converted the pose output from OptiTrack to odometry 

data, and published transform information. See figure 3 for the software setup and figure 4 for the robot setup.

Hardware
- Laptop

- Smartphone

- Scanse Sweep 

LIDAR

- Freenove 4WD 

Smart Car for 

Raspberry Pi

- Raspberry Pi 3 

Model B

- OptiTrack Motion 

capture system

ROS MASTER

Laptop Raspberry Pi

GMapping/Hector 
mapping

VRPN Client Scanse Sweep (non-ROS) 
Freenove Smart 

Car Server

Compatibility 
nodes

Figure 3: Software Setup

Figure 1: Comparison of GMapping and Hector mapping outputs

GMapping Hector Mapping Ground Truth

References
Freenove 4WD Smart Car - 
https://github.com/Freenove/Freenove_4WD_Smart_Car_Kit_for_Raspberry_Pi
GMapping - https://github.com/ros-perception/slam_gmapping
Hector Mapping - https://github.com/tu-darmstadt-ros-pkg/hector_slam
Pointcloud to Laserscan - https://github.com/ros-perception/pointcloud_to_laserscan
Robot Operating System - Stanford Artificial Intelligence Laboratory et al. (2018). Robotic 
Operating System. Retrieved from https://www.ros.org
Scanse Sweep - https://github.com/scanse/sweep-ros
VRPN Client - https://github.com/ros-drivers/vrpn_client_ros
Ponnu G.; George J. Realtime ROSberryPi SLAM Robot. Cornell University, 2016.

Figure 4:
Freenove 4WD 
Smart Car with a 
Raspberry Pi 3 
Model B, two 
batteries, motion 
capture markers, 
and a Scanse 
Sweep LIDAR (left)
Scanse Sweep 
LIDAR (right)


