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e Build dynamic, file-specific tombstone visual (Fig. 1)

Background
Why use LSM trees? e Populate emulated LSM trees for six workload configurations

E — ™ e \alidate visualization by comparing with experimental results (Fig. 2)
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o Use of FADE (Without FADE, With FADE/50%, With FADE/25%)

Fast Competitive Good Space
Ingestion Reads Utilization o Proportion of deletes in workload (6%, 10%)

Deletes in LSM trees _ Resuts

e Insert tombstone to “delete” Fig. 1: Tombstone density and distribution (LSM emulation)
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