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Introduction
● Modern Magnetic Resonance Imaging (MRI) scans 

are time consuming and precarious, since the 

patients must remain still in a confined space for 

extended periods of time. 

● Experts have experimented with undersampled 

k-spaces, trying to use deep learning to predict the 

fully sampled result.

● Current MRI reconstruction primarily makes use of 

the deep learning architecture UNet (Ernst et al 

2021). UNet is a model created in 2015; while the 

models are updated and can still be accurate, new 

architectures have become more advanced. 

● None of these studies experiment with masked 

image modeling for prediction/reconstruction. This 

study makes use of Masked Image Modelling 

through a modified version of the Simple Masked 

Image Modeling (SimMIM) architecture. 

● This study hypothesizes that due to its superior 

ability to extract features from patch-sized images, 

Masked Image Modeling will be able to accurately 

reconstruct MRI images from undersampled 

k-spaces simulated through masking.

● This study makes use of knee images from 
Facebook’s fastmri dataset, split 80/20.

● The data was then augmented by random 
cropping/stretching to reduce overfitting 
probabilities. 

● Since the baseline model was built to 
classify, it had to be re-engineered for 
prediction optimization.

● To experiment, several different encoders 
were tested and hyperparameters were 
changed to find the optimal values. 

● The masking and patch functions were also 
modified to better preserve details by 
reducing parameters like size or masking 
ratio. 

● The model was evaluated on metrics of 
L1-loss, gradient normalization, and 
structural similarity for both training and 
validation after each change. 

● Parameters were then adjusted and 
reevaluated until optimal image and metric 
results were met. 

Fully Sampled K-space Reconstructed K-space

The model was trained on approximately 5580 of the knee MRI images, with 1372 
used for validation. The above images show a fully sampled k-space compared to the 
model’s predicted k-space from the simulated undersampling. From the model, the 
structural similarity of the reconstructed k-spaces reached over 99.5%, such as the 
one shown above, with validation loss values of under 0.01.

Figures 1.1 and 1.2 (above) illustrate the trend of structural similarity (SSIM)over time 
for two encoders used in the study. From the left graph, representing the Swin 
encoder, both the validation and training SSIM increased quickly and remained above 
90% from after epoch 5, and continually increased by small amounts before reaching 
its highest values of >99.5%. The right figure illustrates the use of a Vision (ViT) 
encoder. The figure shows that although the model improved early, the SSIM flattened 
at under 60%, meaning the model was not performing well on the reconstruction.

Fig 1.1 (Swin Encoder) Fig 1.2 (ViT Encoder)

The above figures 2.1 and 2.2 illustrate a direct comparison between the two 
encoders. It is evident the Swin Encoder performs more optimally by the SSIM graph 
alone. However, this coincidentally finds that loss is not an absolute metric for MRI 
reconstruction since the Swin and ViT have similar loss trends and values even though 
they produce significantly different outputs. Figures 3.1 and 3.2 below also illustrate 
the prevalence of overfitting in the Vision Encoder, meaning it’s performance was 
hampered by dataset memorization. 

● The model performed the best at 

reconstructing the extremities of the k-space 

compared to the center

● While both models continually improved, the 

Swin encoder-based model far outperformed 

the vision encoder for reconstruction. 

● The ViT encoder slightly overfit while the Swin 

encoder never did, as shown in Figure 4, 

supporting the idea that the Swin model 

works for MRI reconstruction
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Conclusion

The hypothesis of this study was that the 
Masked Image Modeling architecture 
would perform well on k-space 
reconstruction due to its superior feature 
extraction. This means that the null 
hypothesis would be that the model 
performs subpar on MRI reconstruction. 
Overall, the model performed well on 
reconstructing the extremities which 
control the fine details. The Swin 
transformer performed significantly better 
than the Vision transformer as the primary 
encoder, producing SSIM values almost 
40% greater. The production of 
reconstructed k-spaces more than 99.5% 
similar to the original, fully sampled 
k-space provides enough evidence to 
reject the null hypothesis, meaning this 
study concludes that the MIM model does 
work for basic k-space reconstruction.
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SimMIM Architecture (Xie et al 2019)

Knee MRI Images

Fully sampled vs Undersampled K-space

Figure 2.1: Vision vs Swin encoder validation  structural similarity Figure 2.2: Vision vs Swin validation loss values

Figure 3.1 Figure 3.2

Figure 4

Encoder-Decoder Architecture

Basic Encoder Architecture
(Xie et al 2019)

The function of an encoder 
is to extract the important 
features (attention) from 
an image and format it in a 
readable way for the 
decoder. The decoder then 
takes this input and 
outputs a prediction.

The Swin Transformer works by continually splitting the image into 
patches, reconstructing the missing parts in the individual patches, and 
then remerging the patches and completing reconstruction. The Vision 
transformer works similarly, but does not prioritize reconstruction, rather 
attention and positional embedding (for classification).

Swin vs Vision encoder architectures (Xie et al 2019)

fastmri dataset distribution paired with MR image


