Accelerating Coverage-based Greybox Fuzzing to
Rapidly Identify Bugs in Processors

Brennen Ho'?, Chathura Rajapaksha?, Ajay Joshi?
Palo Alto High School, 50 Embarcadero Rd, Palo Alto CA'; Boston University, Boston MA?
brennen.ho@gmail.com

Fuzzing

e A popular method of identifying bugs in software. Comparlng Opt|m|zed and Orlglnal Code

e Test a program repeatedly with a pool of random inputs to trigger bugs. = Original Runtime (s) ® Optimized Runtime (s) = Percent Decrease

e Coverage-based greybox fuzzing is a prominent fuzzing technique' J P
that uses coverage from the execution to guide the generation of inputs 2000 25%

e Fuzzing has recently been adopted for hardware testing?, but the | . -
effectiveness of existing frameworks is limited due to the coverage 1500 — — - 20%
metrics used. — o — o

2 | _— 15% &

e 1000 ~ _—] ¥ -

ProcessorFuzz (PF) = — =
- - a -

e A hardware fuzzing framework for testing processors and addresses € e 0% 8§

limitations by using a new coverage metric based on control and status 12 500 o X
: : y - , 0
registers (CSRs), which store processors’ internal state. % %
] " ] " ] ] ] 0

To assist in further research with PF, this project investigates methods to ° 200 300 400 500 600“’

accelerate PF so more test iterations can be run in a given time, thereby

increasing the chances of finding bugs. # of Iterations

{S_ RTLt_ (® Figure 2: Runtimes for original and optimized code, as well as time reduction between the two implementa-
Imuiation :
J Extended RTL tions.
1 . Ne_}[’_" . Trace Log
ransition -
(2 Seed 4 — ) @ Y Mismatch? w Convert log to CSV .
Scheduling Mutation @ TransmonUmt Trace Potential ISA Tl‘ace LOQ ISA CSV Flle
g Engine Transition Map Compare Bug J
N\ v, . $
@ Seed Corpus @ Extended ISA
[race kog ace Log. Acceleration
Trace L i
sa | o >~ CSR Comparison
Simulation) @ "
Figure 1: PF logic diagram outlining fuzzing steps, including use of transition map to utilize coverage-based W
greybox fuzzing and steps to identify potential bugs®. { ISA Trace Log J

_ Figure 3: Flow diagram for trace_compare function outlining comparison steps and omitted CSV conversion.

Code profiling was used to determine the most time-consuming oper-
ations. Python’s cProfile library, a C extension with minimal overhead,

tracked the runtime of all functions called during the fuzzing process. e By removing the CSV conversion and more efficiently reading CSR
values directly from the ISA trace log, there was an 18.97% average
| from 200 to 600.
trace_compare (utils.py) 2.177 - A 20% improvement will be beneficial in lengthy sessions during
read_spike_trace (spike_log_to_trace_csv.py) 8 068 which_ tens of th_ousang:ls of it_erations are run at once.
- Fuzzing operations will require fewer resources, as files do not need
read_spike_instr (spike_log_to_trace_csv.py) 1.446 to be generated and removed.
e Since ISA and RTL simulations of a particular test are independent of
extract_transitions (utils.py) 1.266 other tests, parallelization can be used to accelerate the fuzzing process.
- Multi-threading can be used to run several instances of ISA and RTL
Table 1: The total time functions and all of their sub-routines took to execute. Functions from standard python simulations in parallel, which can significantly reduce the bug-finding
libraries were ignored, and the test was run for 100 fuzzing iterations. time.

The time-consuming functions were evaluated to identify possible
optimizations.

e Compression: compress the comparison of each line of the logs References
e Data Structure Choice: utilize more efficient data structures that

exeCUte In C In_Stead O_f python _ 1. Google. 2016. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://github.com/google/oss-fuzz
® CSV COnverS|0n AVOIdance' read ValueS dlreCtIy from trace IOg 2. J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee. 2021. DiFuzzRTL.: Differential Fuzz Testing to Find CPU Bugs. In 2021

2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1286—1303. https://doi.
org/10.1109/SP40001.2021.00103
3. Canakci. 2022. Directing Greybox Fuzzing to Discover Bugs in Hardware and Software. hitps://open.bu.edu/handle/2144/44702

Acknowledgments

| would like to thank Chathura Rajapaksha for his constant support and mentorship throughout this project and Professor Joshi B O S TON
for giving me the opportunity to complete this project as part of the Integrated Circuits and Systems Group. | would also like to
thank Boston University’s Research in Science and Engineering (RISE) program for this enriching and unique opportunity. UNIVERSITY



https://github.com/google/oss-fuzz
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103
https://open.bu.edu/handle/2144/44702

