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Fuzzing

e A popular method of identifying bugs in software. Comparlng Opt|m|zed and Orlglnal Code

e Test a program repeatedly with a pool of random inputs to trigger bugs. = Original Runtime (s) ® Optimized Runtime (s) = Percent Decrease

e Coverage-based greybox fuzzing is a prominent fuzzing technique' J P
that uses coverage from the execution to guide the generation of inputs 2000 25%

e Fuzzing has recently been adopted for hardware testing?, but the | . -
effectiveness of existing frameworks is limited due to the coverage 1500 — — - 20%
metrics used. — o — o
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e A hardware fuzzing framework for testing processors and addresses € e 0% 8§

limitations by using a new coverage metric based on control and status 12 500 o X
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registers (CSRs), which store processors’ internal state. % %
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To assist in further research with PF, this project investigates methods to ° 200 300 400 500 600“’

accelerate PF so more test iterations can be run in a given time, thereby

increasing the chances of finding bugs. # of Iterations
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Figure 1: PF logic diagram outlining fuzzing steps, including use of transition map to utilize coverage-based W
greybox fuzzing and steps to identify potential bugs®. { ISA Trace Log J

_ Figure 3: Flow diagram for trace_compare function outlining comparison steps and omitted CSV conversion.

Code profiling was used to determine the most time-consuming oper-
ations. Python’s cProfile library, a C extension with minimal overhead,

tracked the runtime of all functions called during the fuzzing process. e By removing the CSV conversion and more efficiently reading CSR
values directly from the ISA trace log, there was an 18.97% average
| from 200 to 600.
trace_compare (utils.py) 2.177 - A 20% improvement will be beneficial in lengthy sessions during
read_spike_trace (spike_log_to_trace_csv.py) 8 068 which_ tens of th_ousang:ls of it_erations are run at once.
- Fuzzing operations will require fewer resources, as files do not need
read_spike_instr (spike_log_to_trace_csv.py) 1.446 to be generated and removed.
e Since ISA and RTL simulations of a particular test are independent of
extract_transitions (utils.py) 1.266 other tests, parallelization can be used to accelerate the fuzzing process.
- Multi-threading can be used to run several instances of ISA and RTL
Table 1: The total time functions and all of their sub-routines took to execute. Functions from standard python simulations in parallel, which can significantly reduce the bug-finding
libraries were ignored, and the test was run for 100 fuzzing iterations. time.

The time-consuming functions were evaluated to identify possible
optimizations.

e Compression: compress the comparison of each line of the logs References
e Data Structure Choice: utilize more efficient data structures that
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