
Accelerating Coverage-based Greybox Fuzzing to
Rapidly Identify Bugs in Processors

Brennen Ho1,2, Chathura Rajapaksha2, Ajay Joshi2

Palo Alto High School, 50 Embarcadero Rd, Palo Alto CA1; Boston University, Boston MA2

brennen.ho@gmail.com

Introduction

Fuzzing
	● A popular method of identifying bugs in software.
	● Test a program repeatedly with a pool of random inputs to trigger bugs.
	● Coverage-based greybox fuzzing is a prominent fuzzing technique1
that uses coverage from the execution to guide the generation of inputs
	● Fuzzing has recently been adopted for hardware testing2, but the
effectiveness of existing frameworks is limited due to the coverage
metrics used.

ProcessorFuzz (PF)
	● A hardware fuzzing framework for testing processors and addresses
limitations by using a new coverage metric based on control and status
registers (CSRs), which store processors’ internal state.

To assist in further research with PF, this project investigates methods to
accelerate PF so more test iterations can be run in a given time, thereby
increasing the chances of finding bugs.

1 Seed Corpus

Mutation
Engine

2

ISA
Simulation

RTL
Simulation

Seed
Scheduling

4

7

Trace
Compare

3

Potential
Bug

5

6

Transition Unit
Mismatch?

Extended ISA
Trace Log Extended ISA

Trace Log

Extended RTL
Trace LogNew

Transition?

Transition Map

Figure 1: PF logic diagram outlining fuzzing steps, including use of transition map to utilize coverage-based
greybox fuzzing and steps to identify potential bugs3.

Methods

Code profiling was used to determine the most time-consuming oper-
ations. Python’s cProfile library, a C extension with minimal overhead,
tracked the runtime of all functions called during the fuzzing process.

Functions Time (s)

 trace_compare (utils.py) 2.777

 read_spike_trace (spike_log_to_trace_csv.py) 8.068

 read_spike_instr (spike_log_to_trace_csv.py) 1.446

extract_transitions (utils.py) 1.266

Table 1: The total time functions and all of their sub-routines took to execute. Functions from standard python
libraries were ignored, and the test was run for 100 fuzzing iterations.

The time-consuming functions were evaluated to identify possible
optimizations.

	● Compression: compress the comparison of each line of the logs
	● Data Structure Choice: utilize more efficient data structures that
execute in C instead of python
	● CSV Conversion Avoidance: read values directly from trace log

Results

Figure 2: Runtimes for original and optimized code, as well as time reduction between the two implementa-
tions.

Acknowledgments

Discussion

	● By removing the CSV conversion and more efficiently reading CSR
values directly from the ISA trace log, there was an 18.97% average
reduction in runtime in five experiments with iteration counts ranging
from 200 to 600.

	- A 20% improvement will be beneficial in lengthy sessions during
which tens of thousands of iterations are run at once.
	- Fuzzing operations will require fewer resources, as files do not need
to be generated and removed.

	● Since ISA and RTL simulations of a particular test are independent of
other tests, parallelization can be used to accelerate the fuzzing process.

	- Multi-threading can be used to run several instances of ISA and RTL
simulations in parallel, which can significantly reduce the bug-finding
time.

I would like to thank Chathura Rajapaksha for his constant support and mentorship throughout this project and Professor Joshi
for giving me the opportunity to complete this project as part of the Integrated Circuits and Systems Group. I would also like to
thank Boston University’s Research in Science and Engineering (RISE) program for this enriching and unique opportunity.

References

1.	 Google. 2016. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://github.com/google/oss-fuzz
2.	 J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee. 2021. DiFuzzRTL: Differential Fuzz Testing to Find CPU Bugs. In 2021

2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1286–1303. https://doi.
org/10.1109/SP40001.2021.00103

3.	 Canakci. 2022. Directing Greybox Fuzzing to Discover Bugs in Hardware and Software. https://open.bu.edu/handle/2144/44702

ISA Trace Log

CSR Comparison

ISA CSV FileConvert log to CSV

Acceleration

ISA Trace Log

Figure 3: Flow diagram for trace_compare function outlining comparison steps and omitted CSV conversion.

https://github.com/google/oss-fuzz
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103
https://open.bu.edu/handle/2144/44702

