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Introduction

e High-Performance Computing (HPC)
systems growing larger and more
complex
o Runs scientific simulations and Al
e HPC Systems suffer from
performance variations
o Resource contention, memory
leaks, and hardware related
problems

O Leads to higher energy
consumption

® Machine Learning (ML) models

Results

normal - 91.8%
memeater - 2.0%
dcopy - 2.0%
leak - 2.0%

dial - 2.0%

Discussion/
Conclusions

® HPC systems increasing in
computational power
o Performance variations more
likely
o Easy to use diagnosis
frameworks more important
e Anomalies have different metric
signatures
e Real world scenarios consist mainly
of healthy job runs

created
O Hard to use

e Easily gain insight into HPC systems
and performance variations within

O Outputs are complicated to Sample pie chart output for proportion of the system
interpret for lay people anomalous and healthy nodes in a HPC system o HPC users know what led to
e Synthetic anomalies diagnosed in diagnosis
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produce better insight
HPCWeb: A web based HPC diagnostic system

to anomaly diagnosis

Most important features during model training

Please upload a'csv file to be predicted using the machine learning model. Once uploaded, you can find out the predictions that were made about the F u t u re Wo r k
anomaly types (if found) on the results page. App“catlon Metncs Normal Metncs ’ Integrate methods for runtime
For more information about how this system works please click here . .
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