Computationally Predicting the Effects of Tau Protein Hyperphosphorylation on AMPA Receptors in a Single Neuron Model

Joshua Li1,3, Matthew Y. Jin2,3, Dr. Marianne Bezaire3

Lynbrook High School, 1280 Johnson Ave., San Jose CA 951291, The Harker School, 500 Saratoga Ave., San Jose CA 951292, Boston University, Boston MA 022153

Introduction

- Tau proteins stabilize microtubules in neurons
- Various diseases (Alzheimer’s, Parkinson’s, CTE) associated with defective tau
- Previous studies show that hyperphosphorylated tau protein negatively affects AMPA receptor function
- Understanding its effects on AMPA receptors could help understand Alzheimer’s as well

Methods

- Used Saraga et. al model
- Reduced AMPA receptor conductance to simulate how tau protein hyperphosphorylation would affect the receptors in real life
- Stimulus of fixed value is applied to neuron, and voltage over time at preset locations on dendrites are measured
- Current = -0.05 nA, resting voltage = -70 mV

Results

- AMPA receptors farther from soma
 - Baseline graph
 - 500ms

- AMPA receptor conductivity 99.43% of baseline
 - 500ms

- AMPA receptors closer to soma
 - Baseline
 - 500ms

 - Conductivity 70.71% of baseline, 500ms

 - Conductivity 9.25% of baseline, 500ms

Discussion/Conclusions

- Reduced AMPA receptor conductivity results in fewer action potentials
- Effect magnified when AMPA closer to soma
- No AP when conductivity 8.61% of baseline in case when AMPAR farther from soma
- No AP when conductivity 9.25% of baseline in case when AMPAR closer to soma
- Results show that decreased number of viable AMPA receptors leads to decreased action potential strength and frequency
- Affected AMPA receptor closer to soma likely has more effects than compared to receptors farther from soma
- Results suggest that defective tau protein could contribute to memory loss by reducing frequency and strength of APs because AMPAR damage
- Since Alzheimer’s is very complicated, more complex studies with multiple neuron networks must be done

References

Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003).

Acknowledgements

Many thanks to Dr. Marianne Bezaire and all the TFs for their help and guidance on our project, and to our parents for funding this opportunity.