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a b s t r a c t

On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of
meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient
pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a
highly resolved inventory of hourly fluxes of CO, NO2, NOx, PM2.5 and CO2 from road vehicles on 280,000
road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of
hourly vehicle speeds derived frommobile phone and vehicle GPS data with multiple regional datasets of
vehicle flows, fleet characteristics, and local meteorology. We quantify the ‘excess’ emissions from traffic
congestion, finding modest congestion enhancement (3e6%) at regional scales, but hundreds of local
hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors).
Congestion-driven reductions in vehicle fuel economy necessitated ‘excess’ consumption of 113 million
gallons of motor fuel, worth ~ $415M, but this accounted for only 3.5% of the total fuel consumed in
Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain,
emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads.
The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NOx, PM2.5, and
CO2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories,
suggesting that the large biases in NOx and PM2.5 emissions arise from differences in estimates of diesel
vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions
patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking,
and improvements in overall urban air quality.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Poor air quality is a major global problem, with outdoor air
pollution causing more than 3.3 million annual premature deaths
and many more associated cases of illness (Lelieveld et al., 2015).
Mobile sources are responsible for a large fraction of air pollutant
emissions in the United States. In 2012, more than 75% of carbon
monoxide (CO), and 60% of nitrogen oxides (NOx) were emitted
from on- and off-road vehicles (EPA, 2011a), while mobile sources
in large urban areas accounted for as much as 90% of local CO
emissions (EPA, 2011b).

Variability in vehicle activity, local meteorology, and urban
structure make human exposure to air pollution highly heteroge-
neous in space and time. More than 45 million people, 14% of the
U.S. population, livewithin 300 feet of a major road, where ambient
pollution concentrations from mobile sources are highest and the
negative health impacts of exposure to fine particulates (PM2.5), CO,
and NOx are most severe (EPA, 2014a). Spatial gradients of con-
centration and exposure differ by pollutant. For example, concen-
trations of black carbon (BC) and NO2 decline sharply on scales of
tens to hundreds of meters (Zhou and Levy, 2007; Zhu et al., 2002),
whereas CO and PM2.5 concentrations can persist for much greater
distances from the source (Zwack et al., 2011a). Moreover, in urban
areas large buildings surrounding roadways can form ‘street can-
yons’ in which vehicular emissions are not rapidly dispersed by
atmospheric mixing, causing ambient pollution concentrations to
significantly exceed background levels (Zwack et al., 2011b).
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By contrast, estimates of the pollutants emitted by vehicles tend
to be constructed at highly aggregated scales, both in space (traffic
analysis zones (TAZs) or counties), and/or in time (based on annual
fuel sales and consumption (Dallmann and Harley, 2010; McDonald
et al., 2012), or on estimates of annual vehicle miles travelled
combined with average emissions factors (Harley et al., 2001;
Schifter et al., 2005; Zheng et al., 2009)). A key shortcoming of
such approaches is that per-kilometer vehicle emissions depend on
three classes of variables that are often poorly characterized at fine
spatial and temporal scales: vehicle demographics (the shares of
car versus truck traffic, fuel characteristics, and the vintages of
vehicles' fuel economies and pollution controls), traffic congestion
(which affects vehicles' drive-cycles and speed/acceleration pro-
files) and ambient weather conditions (which affects the perfor-
mance of engine combustion and emission control devices)
(Parrish, 2006). Without such detailed data, generalized spatial
proxies (e.g., population, road density) are often used to downscale
aggregate emissions estimates (Huang et al., 2011; Olivier et al.,
2005), ignoring systematic variations in the local distributions of
vehicle types and activity. Although recent advances have
demonstrated the feasibility of constructing fine-scale vehicle
emission flux estimates without extensive downscaling (Gately
et al., 2015; McDonald et al., 2014), comprehensive roadway-level
emissions inventories based on actual vehicle activity and fleet
composition (e.g. Nyhan et al., 2016) remain rare. The principal
difficulties are the lack of direct fine-scale observations, and the
consequent need to combine potentially incommensurate datasets
to approximate the variability of on-road emissions at sub-
kilometer, sub-daily scales. Since vehicle emissions factors are so
sensitive to changes in the speed and acceleration profiles of each
vehicle (i.e. the ‘drive-cycle’), capturing this variability at the rele-
vant time scales (minutes to hours) can significantly improve the
accuracy of emissions estimates (Nyhan et al., 2016).

In this paper we demonstrate a novel approach to quantifying
emission fluxes at length scales of individual roadway segments
and time scales of hours. Air quality models run for urban areas
often rely on an emissions inventory generated by a travel demand
model (TDM) which uses land use and travel survey data to esti-
mate vehicle trips across an urban domain for an average weekday
or weekend day (Lazaridis et al., 2008; Snyder et al., 2014). Emis-
sions factors are then assigned to these vehicle trips to produce
daily emissions estimates for different pollutants. Typically, the
time resolution of these models is several multi-hour periods, such
as the morning and evening peak ‘rush-hour’ congestion periods,
while the spatial resolution is traffic analysis zones (TAZs) that vary
in size depending on the model used, but often encompass areas
roughly similar to U.S. Census Block Groups (10e20 ha in the denser
urban core, 5e10 km2 in the less dense suburban and rural areas).
Here we demonstrate how the traditional TDM approach can be
considerably improved upon by leveraging detailed road-specific
data on hourly vehicle travel speeds obtained from GPS mobile
phone data and hourly traffic volumes from in-road sensors to
quantify hourly emissions at the road-scale. Our method combines
existing TDM estimates of vehicle trips with additional individual
pieces of information over the large urban domain of Eastern
Massachusetts, assimilating data at various native spatial and
temporal resolutions into a consistent framework. The resulting
high-resolution emissions inventory is then used to quantify the
relative contributions of hotspots and congestion to urban air
quality, and to test the local fidelity of existing coarse-scale in-
ventory products.

2. Methodology

The focus of the present study is the 8640 km2 metropolitan

area surrounding Boston, Massachusetts, which encompasses the
101 towns that make up the Boston Metropolitan Planning Orga-
nization (MPO) jurisdiction and includes a broad range of road
types, settlement patterns and traffic congestion levels (Fig. 1). This
area regularly ranks in the top 5 of U.S. urban areas for traffic
congestion (Schrank et al., 2012) and the top ten for total vehicle
miles traveled per year (FHWA, 2012a). GPS data from in-vehicle
mobile phones and on-board navigation systems were used to
quantify hourly vehicle speeds on over 67,000 road segments
across the domain. We paired vehicle speed data with hourly traffic
volume data obtained from in-road sensors tomodel hourly vehicle
activity across the entire regional road network for the year 2012.
We calculate emissions for each hour of the year (indexed by h),
estimating the flux of five pollutants (CO, NO2, NOx, PM2.5 and CO2,
indexed by p) emitted by vehicles on each of 280,424 road seg-
ments (indexed by l). Pollutant species are emitted by v types of
vehicles, traveling at speeds that we discretize into s 5-mph in-
tervals. Each road segment's hourly emission flux (q*) is the
product of the vehicle kilometers traveled (VKT, k*) on it and an
emission factor (f*) for every combination of v and s, defined as a
response surface that is a function of spatially and temporally
varying temperature (T) and relative humidity (H):

q�
p;l;h ¼ SvSsk

�
v;s;l;h � f�p;v;s

�
Tl;h;Hl;h

�
(1)

We construct a suite of emission factors to encompass the range
of vehicle types, travel speeds, and meteorological conditions
observed in our study domain from multiple customized runs of
the EPA Motor Vehicle Emissions Simulator (MOVES) version
2014a, (EPA, 2014b) with key inputsdcounty-specific data on fuel
composition, vehicle fleet age and composition, and historical
meteorologydcustomized with local data from our domain and
target year. Our meteorological variables were obtained from the
North American Land Data Assimilation System (NLDAS-2), which
reports 0.125� gridded hourly temperature and specific humidity
(Xia et al., 2012). Vehicle fleet age distributions and fuel formula-
tion distributions were provided by the Boston MPO. Output from
MOVES included combined emissions factors (for running and
evaporative emissions) for each pollutant, stratified by vehicle type,
road type, fuel type, vehicle speed, ambient air temperature, and
relative humidity.

Our fundamental methodological advance is the linking of
emission factors to imputed flows of different types of vehicles on a
particular road segment in a given hour and traffic speed interval.
For this we utilize a high-resolution database of directly measured
vehicle speeds obtained from mobile phone and on-board vehicle
navigation GPS data provided by the traffic consultancy firm INRIX.
The raw data record vehicle speeds on more than 67,000 individual
road segments in the study area at 5-min intervals. For computa-
tional tractability, these observations were aggregated to produce
hourly mean speeds, which were matched to road segments.

The INRIX data over-represent large- and medium-sized roads,
which although they account for only 15% of the total road length in
kilometers across the domain, represent more than 70% of the total
annual VKT. On the road segments for which there were no INRIX
records, we imputed speeds based on volume-delay functions
(VDF) that relate hourly traffic volumes to average traffic speed
using the capacity of the road segment and its typical ‘free-flow’

speed (Dowling, 1997). VDF parameterizations were taken from the
TDM, which uses a modified Bureau of Public Roads (BPR) formula
that varies by road functional class and rural-urban context (Eqn.
S(1) in the Supporting Information). Because unmodified BPR-
based VDFs have been shown to overestimate speeds in con-
gested conditions, the formulas used by the TDM have been cali-
brated using local traffic counts and directlymeasured speeds using
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‘floating car’ data across awide range of traffic conditions. However,
this method results in only 4% of non-INRIX road segments being
classified as experiencing significant congestion, mostly in the core
of the urban area surrounding downtown Boston. We consider this
to be a conservative estimate, because of the challenges of accu-
rately modeling low vehicle speeds under heavy congestion
(Dowling, 1997; Dowling and Skabardonis, 1993; Skabardonis and
Dowling, 1997). To identify whether traffic flow by link and hour
falls into a given speed bin we use the indicator variable ds;l;h.

Our estimates of vehicle activity were constructed by inte-
grating vehicle volumes estimated by vehicle type for each road
segment in the TDM with traffic counts derived from the Massa-
chusetts Department of Transportation (MDOT) road sensor
network. Boston MPO's TDM is a traditional four-step model run in
the TransCAD transportation planning software (Boston MPO,
2017). The model uses as inputs data on local land-use, de-
mographics, zoning, and a 2010 statewide travel survey
(Massachusetts DOT, 2012) to generate estimates of trip origins and
destinations for personal and freight transportation across the
study domain. Trips are assigned to multiple modes of travel,
including vehicles, carpooling, public transit, cycling, and walking.
The model then assigns vehicle trips, stratified by vehicle class
(passenger cars, passenger trucks and SUVs, medium-duty trucks,
and heavy-duty trucks and buses) to the road network using opti-
mization algorithms that account for road capacity and levels of
congestion. Traffic volumes by vehicle type on each road segment
(separately for each direction, in the case of two-way roads) are
calculated at four time periods of an average weekday, given by the
index tdAM peak (6ame10am), Mid-Day (10ame3pm), PM peak
(3pme7pm), and Night (7pme6am). The resulting model output,
which we denote Gv;l;t , lacks the temporal resolution needed for
hourly emissions estimates. We therefore utilize it to determine the
distribution of vehicle types on a given road segment during the

hours within each aggregated TDM time period. To this end we
calculated each vehicle class' share of the total volume on each road
segment in each period, denoted as cv;l;t :

cv;l;t ¼
Gv;l;t

SvGv;l;t
(2)

We obtain traffic data from two sources: estimates of average
daily traffic volumes (ADT) for every road in the study domain from
MDOT's annual Massachusetts Road Inventory (Al), and hourly
traffic counts on 62 major and minor roads in the study domain
fromMDOT permanent traffic recorders (kl0 ;h). From the latter data
we derived hourly allocation factors that we used to partition the
former annual link volumes (ADT x 366 days) among every hour of
2012. To overcome the sparsity of traffic count data, allocation
factors were assigned to road segments using a nearest-neighbor
algorithm

al;h ¼ kl0 ;h
Sh0 kl0 ;h0

if l2N
�
l
0�

(3)

where N ðl0 Þ denotes the spatial neighborhood surrounding each
traffic recorder. The resulting imputed hourly traffic volumes were
then further divided among different vehicle types using the TDM's
outputs for the corresponding road link and intra-day time-step,
and all vehicles were assigned the speed of the traffic on that link at
that hour

k�
v;s;l;h ¼ jv;h � ds;l;h � al;h � Al � cv;l;t if h2t (4)

MDOT vehicle classification counts indicated that weekend truck
activity was on average 25e35% of weekday levels, so truck vol-
umes during weekend hours were scaled downward by the

Fig. 1. Annual mean hourly CO flux for study domain (Panel A). Panels B and C show a 65 km2 area surrounding downtown Boston described by the purple box in Panel A. The mean
hourly CO flux during weekday evening peak periods (3pme7pm) is shown in Panel B, while Panel C shows the difference between the weekday evening CO flux and the overall
mean weekday flux (same color scale). Freeway and major arterial emissions are 25e50% higher during evening peak compared to mean daytime emissions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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appropriate amount (indicated by the vehicle-hour adjustment
factor jv;h). Our final step was to calculate separately the emissions
from passenger vehicle cold starts, using emission factors from
MOVES and detailed estimates of household vehicle trips across the
domain obtained from the travel survey (Massachusetts DOT,
2012). Details of the methodology are provided in the Supporting
Information (SI). Datasets of our emissions estimates are publi-
cally available for download at http://dx.doi.org/10.7910/DVN/
4YGU5J.

3. Results and discussion

3.1. Regional emissions totals

For the study area in the year 2012 we estimate that running
vehicles emitted 134.1 Gg of CO, 2.8 Gg of NO2, 61.2 Gg of NOx,
2.4 Gg of PM2.5, and 20,734 Gg of CO2. Additional emissions from
passenger vehicle cold engine starts are 72.9 Gg of CO, 5.5 Gg of
NOx, 0.1 Gg of PM2.5, and 650.1 Gg of CO2. At the pixel scale
(100 m � 100 m grid cells), the mean annual surface fluxes per unit
of land area were 27.2 g-m�2 of CO, 8.0 g-m�2 of NOx, 0.3 g-m�2 of
PM2.5, and 2810.9 g-m�2 of CO2. Vehicle starts account for a small
fraction of the total emissions of most species (4.8% of PM2.5, 8.3% of
NOx, and 3% of CO2), with the exception of CO (35%). This estimate is
conservative, as start-up emissions from non-passenger vehicles
could not be reliably estimated. The comparatively large share of CO
from cold starts is a function of the large number of trips by pas-
senger cars throughout the study domain, a short average trip
distance due to the Boston metro area's high population density,
and the region's cool ambient temperatures.

3.2. Air-pollution impacts of traffic congestion

Vehicles’ fuel economy and emission rates rise as their average
speed declines, due to the increased engine load required for re-
acceleration, in conjunction with the power-efficiency curve of
internal combustion engines (Figs. S4 and S5) (West et al., 1999;
Zhang et al., 2011). A key advantage of the INRIX dataset is that it
enabled us to use Eq. (1) to quantify the air pollution burden of
reductions in vehicle speed due to road traffic congestion at mul-
tiple spatial and temporal scales. We simulate two alternative
scenarios to explore the air pollution consequences of moving to
congestion-free patterns of traffic and specific emissions: the first is
a hypothetical expansion of road network capacity to accommodate
current travel with no loss of service, while the second alleviates
congestion through volume-reduction measures that are perfectly
targeted in time and space.

Scenario (i) increases the speed of baseline traffic flows on every
road segment to their respective free-flow velocities throughout
2012. Traffic volumes are maintained at baseline levels: they
neither decline to the levels necessary to attain free-flow speed
under current road capacity, nor increase because of ‘induced de-
mand’ incentives for individuals to take advantage of road capacity
expansion by driving more (Cervero and Kockelman, 1997; Ewing
and Cervero, 2001; Hymel et al., 2010; Noland, 2000; Small and
Van Dender, 2007). The results thus indicate the potential emis-
sion reductions from eliminating present-day vehicle traffic
congestion. Scenario (ii) reduces the traffic volume on each
segment at congested hours to the level necessary to attain free-
flow speed. For hours where observed speeds were below free-
flow speeds, we artificially reduced traffic volumes to the
maximum volume that was otherwise observed on the link while
speeds were still at free-flow conditions. No adjustments in traffic
volumes were made for those hours where observed speeds were
at or above free-flow levels. The concomitant VKT reductions are

the cost of successfully managing congestion.
Scenario (i) generates region-wide emission reductions that are

small, ranging from 3.7% to 6.1% for different pollutants (Table 1).
However, on individual roadways pollution abatement from elim-
inating congestion can be far larger. These benefits tend to occur
within the urban core, on downtown Boston's heavily trafficked
freeways and arterials (Fig. 2), where emission reductions can be
25%e75% or higher, depending on the pollutant. For pollutants
emitted mainly by diesel vehicles (NOx and PM2.5), the relative
reductions in emissions from eliminating congestion are larger for
PM2.5 than for NOx, reflecting variation in the shapes of different
pollutants' emission-speed curves. For example, for heavy trucks
there is a notable increase in PM2.5 emission rates at speeds of
35mph and below, in contrast to NOx emissions rates which tend to
increase somewhat more smoothly and slowly as speeds decrease
(Figs. S4 and S5). We identify multiple areas of particularly high
emissions (“hotspots”), the bulk of which are located near freeways,
freeway ramps, and major urban arterials. The spatial distribution
of these hotspots was highly heterogeneous. Certain corridors and
intersections experienced very large amounts of both emissions
and congestion, while nearby roads with similar attributes remain
uncongested, exhibiting moderate emissions. We also observed
large temporal variations in emissions, with weekday morning and
evening peak periods having the highest levels for all pollutants.
Weekday evening emissions were in many places 25e50% higher
than mean daytime emissions (Fig. 1C). Patterns of traffic conges-
tion, as well as the relative contribution of congestion to emissions,
were also highly variable in space and time (Fig. 2).

We also found that many of the locations in Boston's urban core
that have the highest estimated emissions were distant from the
AQS monitoring stations in Kenmore and Dudley Squares (Fig. 2B,
white and grey circles, respectively). The 25 ha areas surrounding
these stations show very limited contributions from local conges-
tion (Fig. 2E and F). As a contrasting congestion-dominated
example, mean daily emissions of NOx and CO at a location
several kilometers west of the stations (Fig. 2B, white square) were
found to be between five and eight times higher (Fig. 2GeH) than
the emissions levels immediately surrounding the stations
(Fig. 2EeF). This result has important implications for the efficacy of
traditional emissions monitoring protocols. While CO is a relatively
long-lived molecule in the atmosphere (Wang and Prinn, 1999),
NO2/NOx undergoes significant secondary reactions within hours of
being emitted in urban areas (Streets et al., 2013). The sparsity of
the AQS network suggests that measured NO2/NOx concentrations
are unlikely to reflect the high concentrations of these pollutants in
emission hotspots several kilometers away. Our identification of
the latter locations thus provides insight into future site selection
for additional short- and long-term air quality monitoring.

The effects of eliminating congestion vary substantially over the
course of the day, with patterns that differ by pollutant and loca-
tion. For NOx (Fig. 2E and G), congestion amplifies emissions both
during the middle of the day, when truck traffic tends to be highest,
and in the late evening. For CO (Fig. 2F and H), congestion
enhancement is large and persistent across the entire late after-
noon and evening hours. For all pollutants there is pronounced
variability in congestion enhancement during the middle of the
day, when hour-to-hour fluctuations in average traffic volumes are
largest. In general, the locations with the largest congestion-related
amplification of emissions are roads and intersections that have
both high levels of traffic throughout the day, as well as regular,
persistent, heavy congestion (Fig. 2B, G, H).

Scenario (ii) generates noticeably largerdthrough still
comparatively modestdaggregate pollution abatement (7.5%e
9.5%), at the cost of a 4.1% reduction in annual region-wide VKT. The
fact that emission reductions can be more than twice as large as the
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declines in VKT that they require suggests that finely targeted VKT
reductionsmay be attractive as an air quality management strategy,
especially for pollutants emitted predominantly by diesel vehicles
(NOx and PM2.5). As in the previous scenario, in percentage terms
there is the potential for considerable abatement at the local scales
where air pollutants exert deleterious impacts on human health.

Less optimistically, our results drive home the simple fact that
the vast majority of vehicle air pollutants are emitted during non-
congested travel. The main features of the aggregate distribution
of vehicle speeds through the domain (Fig. 3A) are that over 87% of
VKT occurs under free-flow conditions (DMPH < 5), and that most
of the congested travel involves only modest speed reductions. The
largest increases in per-km emissions rates above their free-flow

levels occur when speed reductions are significant (DMPH > 20;
Fig. 3B), especially for arterial roads with already low free-flow
speeds. However, across our domain only 7.1% of total VKT was
subject to such heavy congestion, accounting for roughly 11e13% of
total regional emissions, depending on the pollutant. Even in the
City of Boston, 80% of VKT occurred at speeds at or within 5 miles
per hour of free-flow conditions, and only 8% of VKT experienced
>15mph speed reductions. These results are consistent with other
studies such as Barth and Boriboonsomsin (2008) who found that
for roads in Los Angeles, CA, short-term, localized enhancements of
CO2 emissions from congestion could be large (20%e40%), but
overall total enhancements remained modest (~7%), due to a dis-
tribution of VKT by speed that was similar to the distribution we

Table 1
Annual total emissions for study domain compared to estimated emissions under twomitigation scenarios: (i) Speed Improvement ewherein traffic congestion is eliminated
but vehicle volumes remain the same; and (ii) Volume Reductionewherein vehicle volumes are reduced on congested roads by an amount sufficient for traffic to travel at free
flow speeds at all times.

Pollutant Running emissions [Gg] Scenario (i) Speed improvement [Gg] Scenario (ii) VKT reduction [Gg]

CO 134.1 129.0 (�3.8%) 123.6 (�7.8%)
NO2 2.79 2.69 (�3.7%) 2.58 (�7.5%)
NOx 61.1 58.8 (�3.8%) 56.5 (�7.6%)
PM2.5 2.39 2.25 (�6.1%) 2.16 (�9.5%)
CO2 20,734.0 19,622.7 (�5.4%) 18,830.3 (�9.2%)

Fig. 2. Panel A shows mean weekday daytime NOx fluxes in the metro Boston urban core. Panel B shows the percent of total weekday daytime NOx emissions that occur solely due
to congested traffic conditions. Panels CeD show median and interquartile range of ambient NOx and CO concentrations measured at the EPA AQS stations in Kenmore and Dudley
Squares, (white circle and grey circle in panel A, respectively). Panels EeF show median diurnal weekday NOx and CO fluxes for grid cells within 500 m of the AQS stations. Panels
GeH shows equivalent fluxes at an emissions ‘hotspot’: Interstate-90 near a major exit ramp (white square). Solid lines show 2012 estimates, grey dashed lines show estimated
fluxes if traffic congestion was eliminated. Shaded areas represent interquartile ranges of annual hourly emissions/concentrations.
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observed in our study area (i.e. 80% of VKT occurring at free-flow
speeds).

In addition to environmental impacts, it is commonly reported
that congestion results in a large amount of ‘excess’ fuel andmoney,
as vehicles are running at reduced fuel economywhen in traffic. For
example, the Texas Transportation Institute's Urban Mobility
Report (UMR) (Shrank et al., 2012) calculates annual estimates of
the amounts of ‘excess’ fuel, money, and time spent by drivers as a
result of traffic congestion for hundreds of urban areas across the
United States.

The Boston Urbanized Area often ranks in the top five or top
three most congested urban areas in the U.S., according to different
metrics calculated in the UMR. Our model output for Scenario (i)
indicates that in 2012 traffic congestion across our entire Eastern
Massachusetts domain resulted in the consumption of an ‘excess’ of
80.97 million gallons of gasoline and 32.84 million gallons of diesel
fuel. To more directly compare our results to the UMR, we subset
our domain to the Boston Census Urbanized Area boundaries (to
match the geography used by the UMR). For this sub-domain, our
estimate of ‘excess’ congestion-associated fuel consumption is 61
million gallons, similar to the 70 million gallons reported in the
2012 UMR (Shrank et al., 2012). Using 2012 average prices for
gasoline and diesel in Massachusetts ($3.53 per gallon and $3.93
per gallon, respectively) this congestion-derived fuel consumption
resulted in $414.9 million in ‘excess’ fuel expenditures for drivers in
our study area. Although not small, this ‘excess’ fuel use is modest
relative to the total fuel consumed, similar to our emission re-
ductions in Scenario (i). In 2012 Massachusetts consumed over 3.2

billion gallons of motor fuel (FHWA, 2012b), making fuel con-
sumption due to traffic congestion equivalent to only 3.5% of the
statewide total.

We thus reiterate the relatively minor importance of conges-
tion's impacts on emissions, fuel, and costs at regional or national
scales. For policymakers, the main value in congestion mitigation
continues to lie in targeting speed improvements for the most
severely congested locations to improve both traffic flow and local
air quality. Overall, large-scale abatement of vehicular pollution
will require significant reductions in road travel and/or substantial
improvements in the per-km emissions performance of the vehicle
fleet (via enhanced pollution control technologies and/or shifts to
electric and other low-emission vehicles).

3.3. Robustness

A key test of the robustness of our emission model framework
was the comparison of estimates of CO2 with the DARTE inventory
(Gately et al., 2015) for the same geographic domain. The two es-
timates were in good agreement (Fig. S2), with 20,734 Gg CO2 for
our new inventory and 22,421 Gg CO2 for DARTE. This is an
encouraging result, as DARTE relies on a much coarser distribution
of vehicle types, and employs state-level average fuel economy
factors that do not account for the impacts of vehicle speeds and
congestion on fuel use. The main difference from DARTE is urban
and rural areas' relative contributions to total emissions. On
average, DARTE emissions are lower in the urban core and inner
suburbs compared to our model, but higher on the large freeways
and in the lower density outer suburbs and rural areas.We attribute
this disparity to the different data sources that underlie DARTE-
eespecially the traffic counts, which were disaggregated from the
county level solely by road functional class. This procedure results
in a ‘smearing’ of emissions across all of the roads of a certain class
in each county. By contrast, the current model directly captures the
spatial variation in traffic on each functional class of road within
each county, as every road segment has a unique value for ADT
estimated from local traffic counts.

We also compared our results to annual reported on-road
vehicle emissions at the county scale in the 2011 EPA National
Emissions Inventory (NEI) (EPA, 2011c). Despite small differences in
the domain-wide aggregate annual emissions of CO (<5%), our es-
timates of several other pollutants diverged from the NEI (Table 2).
Relative to the present inventory, average NEI emissions are 18%
lower for CO2, 38% lower for PM2.5, and 44% lower for NOx. This
finding contributes additional results to the extensive body of
ongoing research aimed at evaluating the accuracy of NOx emis-
sions inventories across the U.S. Some studies have found that the
NEI overestimates mobile source NOx emissions relative to surface
and/or satellite measurements (Anderson et al., 2014; Kim et al.,
2016), while others have found that the NEI both over- and un-
derestimates surface measurements depending on the year and the
spatial region (Xing et al., 2013). The accuracy of both diesel heavy
vehicles' activity levels and emissions factors are key uncertainties,
with NOx emission estimates being most sensitive to these inputs

Fig. 3. Distribution of annual VKT by congestion intensity (Panel A). Congestion in-
tensity is expressed as the difference between free-flow and observed speeds. Panel B
shows the percent change in emission rates of PM2.5, NOx, and CO as a function of
congestion intensity. Over 87% of VKT in the domain is uncongested (DMPH < 5), and
of the VKT that is congested, over 50% experiences only moderate speed reductions of
5e15 MPH.

Table 2
Annual total emissions for the five Massachusetts counties in our study domain
compared to emissions estimates from the 2011 EPA National Emissions Inventory
(NEI2011v2), and our no-congestion Scenario (i).

Pollutant EPA NEI 2011v2 [Gg] This Study [Gg] Scenario (i) [Gg]

CO 162.72 170.03 167.05
NOx 3.018 5.538 5.408
PM2.5 1.329 2.104 2.008
CO2 14,523.21 17,397.69 16,213.08
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(Koupal et al., 2014).
Given the NEI's agreement with our estimates of CO emissions,

which are predominantly due to gasoline vehicle activity (EPA,
2015a), the likely drivers of the discrepancies in PM2.5 and NOx
are differences in (a) diesel vehicle VKT, (b) PM2.5 and NOx emission
factors, and/or (3) the MOVES drive cycle and vehicle speed profiles
relative to INRIX observations. The fact that the NEI's emission
factors are obtained from the same version of MOVES used here
enables us to rule out (b) as a substantial source of deviation. But
the implicit consistency of underlying gasoline vehicle VKT, com-
bined with the 18% difference in the two inventories' CO2 emis-
sions, suggests that differences in diesel VKT (a) are the likely cause.
To evaluate the impact of drive-cycle differences (c), we compared
NEI against emissions from our no-congestion Scenario (i), and
found that congestion elimination does reduce the discrepancy, but
only by 1e3% (Table 2). We find it unlikely that the remaining
differences in NOx and PM2.5 emissions can be explained by the
difference between theMOVES truck drive-cycle and our ‘free-flow’

scenario, especially since the MOVES drive cycle attempts to cap-
ture the wide variety of traffic conditions that exist on urban
roadways (EPA, 2015a). It thus seems that the majority of the
divergence is due to aggregate differences in diesel vehicle activity,
with minor contributions from differences in vehicle speeds and
ambient meteorology.

This line of reasoning is broadly consistent with tests by Koupal
et al. (2014) of the relative influence of the different MOVES inputs
submitted by states’ to the 2011 NEI. Koupal et al. (2014) found that
although the median value for the shares of VKT comprised of
medium and heavy trucks that were submitted to MOVESwas quite
similar in magnitude to the default values used byMOVES, the 90th
percentile of truck VKT shares was almost double the default value.
The upshot of running MOVES at the 90th versus the 10th
percentile of state-submitted truck shares was a difference of >50%
for total daily NOx and >100% for total daily PM2.5. The large dif-
ferences between our inventory and the 2011 NEI are thus within
the range of variation reported by Koupal et al. (2014), suggesting
that relative to the MOVES default values, the truck VKT shares
estimated by the TDM for eastern Massachusetts are well within
the range of variation observed across all U.S. counties. This
assessment underscores the importance of efforts to further
improve the accuracy of truck VKT and emission factor data sub-
mitted to EPA by the states for the preparation of the NEI.

3.4. Impacts of future climate change

To assess the impact of climate warming on transportation
related emissions we adjusted our meteorological inputs using
mean monthly temperatures in 2050 under the SRES A2 scenario
(IPCC, 2000) reported by the National Center for Atmospheric
Research (NCAR) Community Climate System Model (CCSM)
(NCAR, 2012). We made no adjustments to the relative humidity
values in our base case 2012 meteorology, only adjusting hourly
temperatures by the difference between the 2012 NLDAS-2
monthly mean temperatures and the 2050 CCSM forecast
monthly mean temperatures. All other model parameters,
including vehicle fleet mix and 2012 traffic congestion were held
constant. The results capture changes in emissions arising solely
from changing temperatures.

Across our domain we find a roughly 2.5% rise in emissions of
both CO and NOx, with many local areas experiencing larger in-
creases. While running emissions rates of CO and NOx are relatively
insensitive to ambient temperature (EPA, 2015b), warming does
have an indirect effect on their emissions rates. Higher summer
temperatures result in increased usage of vehicle air-conditioning,
fuel consumption per kilometer travelled, and by extension overall

vehicle emissions (Choi et al., 2010). While the magnitude of this
effect is modest, at the regional scale it is on par with the potential
emissions reductions achieved in Scenario (i), above. Regardless
whether congestion mitigation policies are implemented over the
next several decades, the region is likely to experience modest in-
creases in emissions arising solely due to warming temperatures.
The upside, albeit modest, is that higher winter temperatures result
in slightly lower emissions of PM2.5 (0.6%), driven by reductions in
the number of starts and hours of vehicle operation under cold
temperatures that are associated with poor fuel combustion and
high particulate emission rates. The caveat is that the region-wide
reduction in PM2.5 emissions obscures several areas where local
emissions may increase by similar small amounts.

On balance, this mixed picture of warming temperature effects
on emissions suggests that the consequences of climate change for
regional air quality will be broadly negative, as rising temperatures,
particularly in the summer months, are likely to enhance vehicle
emissions of the ozone-precursor pollutants CO and NOx. These
estimates do not account for the potential impacts of higher tem-
peratures on vehicle activity and traffic congestion, or the sec-
ondary chemistry associated with production of low-level ozone
and other respiratory irritants. The latter are anticipated to be yet
another harmful consequence of changes in the climate (Jacob and
Winner, 2009; Kinney 2008; Steiner et al., 2006).

3.5. Summary and implications

The key advantage of our modeling framework is its ability to
bridge the gap between the fine temporal scale and highly localized
air quality records from AQS monitors and the annual county-level
estimates of pollutant emissions reported by the NEI. Assimilating
vehicle speed and volume data based on detailed local model
outputs facilitates quantification of pollution emitted by traffic on
individual road segments in every hour of the year across a large
study domain. Using actual vehicle speeds instead of the default
MOVES drive cycle enables us to disentangle the effects of traffic
congestion on emissions at both regional and local scales, high-
lighting the specific locations where mitigating congestion via VKT
reductions can yield the largest reductions in emissions of vehicular
air pollutants. Our finding of a modest overall impact of traffic
congestion on emissions at broad spatial scales is tempered by the
finding that congestion significantly enhances emissions in many
localized areas within the study domain, revealing a clear potential
for significant emissions reductions by targeting mitigation efforts
at key hotspots.

The sparsity of in-situ air quality measurements remains a
persistent obstacle to explicit modeling of the spatiotemporal
patterns in urban air quality, both in the U.S. and in the developing
world. Sensor networks such as the AQS provide valuable data for
the calibration and validation of regional air quality models, but
these simulations cannot fully infer the spatial and temporal
structure of atmospheric concentrations using these sparse surface
measurements alone (Lauvaux et al., 2012; Wu et al., 2011).
Developing countries frequently lack both air quality monitoring
and traffic activity data. However, because mobile phone and GPS
data are widely available even in developing countries, our meth-
odology offers a potentially fruitful way to improve estimation of
vehicle tailpipe emissions, urban air quality and human health
impacts in the developing world.

Bottom-up inventories will continue to play a critical role in
urban air quality surveillance by establishing the best a priori es-
timate of emissions source activity across a given geographic
domain. Especially in urban areas with widely spaced monitors,
estimating localized changes in air quality across the large areas
between stations remains challenging in the absence of additional
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data or measurements. Localized variations in atmospheric mixing
and secondary chemical reactions can significantly dilute or
intensify pollution concentrations over distances as short as a few
hundred meters (Zhou and Levy, 2007), limiting the ability of
monitor data to capture short-lived, highly localized enhancements
in pollution concentrations.

Initiatives such as the C40 Cities Climate Leadership Group
internationally and the Compact of Mayors in the United States,
have propelled cities to the forefront of efforts to improve air
quality. Nevertheless, in order to make genuine progress toward
their objectives of reducing emission cities will need transparent,
reproducible and easily implementable methodologies to track the
pollution emitted by vehicles on an ongoing basis (Hutyra et al.,
2014). The approach outlined in this paper has both the granu-
larity necessary to inform local policy interventions that can make
meaningful changes in a city's emissions profile at the human-scale
(Gurney et al., 2015), and the extensibility to facilitate its imple-
mentation in a wide range of urban contexts. This is especially
important given recent and upcoming satellite missions (e.g. OCO-
2, OCO-3, TROPOMI, TEMPO, GeoCARB) that are poised to provide
unprecedented views of both urban CO2 profiles and broader urban
air quality worldwide. Coupling satellite observations with the type
of high resolution emissions modeling described here is an
important step toward improving our ability to monitor air pollu-
tion concentrations in urban areas, target mobile sources emission
reductions in space and time, and assess the fine scale conse-
quences of abatement measures.
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 1 

SUPPLEMENTARY INFORMATION 2 

Details of Data Sources 3 

INRIX Traffic Speeds 4 

The INRIX database of average hourly vehicle speed by segment is derived from thousands of mobile 5 
phone and vehicle GPS devices, which are then aggregated by INRIX to calculate average travel speed on 6 
over 60,000 road segments in our study domain at 5-minute intervals for the year 2012. The INRIX road 7 
network separates vehicle travel on each road segment by the direction of travel, to account for the 8 
variation in daily traffic patterns on roads that experience distinct directional patterns of traffic activity 9 
depending on the time of day. The georeferenced Massachusetts Road Inventory (MRI) road network 10 
forms the spatial basis for our emissions model, but lacks a crosswalk to unique road segment IDs in the 11 
INRIX database. We therefore merged the two datasets in a GIS using a proximity-based spatial join. 12 
Manual validation of road segments in the merged dataset was undertaken by Boston MPO CTPS staff 13 
for major roadways. This procedure was completed for all road segments by the authors. 14 

Traffic Volumes 15 

The MRI shapefile contains estimates of ADT volumes for each road segment, as well as the number of 16 
lanes in the segment and the roadway functional class as defined by FHWA. ADT estimates were missing 17 
for some road segments, mostly local roads. However, estimates of total vehicle-miles travelled on local 18 
roads in the Boston Urbanized Area are available from the FHWA Highway Statistics Series Table HM-71 19 
(FHWA 1980-2012). We used these aggregate totals to assign an average ADT to each Boston Urbanized 20 
Area local road with missing observations in the MRI. The procedure is as follows. We first subtracted 21 
total VMT from the local roads that do have a reported ADT from the total VMT in Table HM-71, and 22 
then divide the remaining VMT by the total length of all the local roads that are missing VMT in the 23 
Urbanized Area, and then divide again by 366 days, to get an average daily traffic volume for all local 24 
roads. 25 

CTPS Highway Assignment Model 26 

We joined output from the CTPS highway assignment travel demand model (TDM) year 2012 base run to 27 
the MRI attribute table. The highway assignment model is implemented using the TransCAD traffic 28 
modeling software, and is continuously updated and maintained by CTPS as part of its mission to model 29 
and forecast local and regional transportation system demand. The model output we use is the final 30 
component of a larger model set which follows the well-known four-step transportation modeling 31 
procedure: 32 

1. Trip generation: estimation of the number of daily trips in Eastern Massachusetts, based on travel 33 
survey data, vehicle fleet data, and demographic information. Freight trips are estimated separately 34 
from non-freight trips. Trip generation is estimated for four time periods: AM peak (6am – 10am), 35 
Midday (10am – 3pm), PM peak (3pm – 7pm), and Nighttime (7pm – 6am). 36 

2. Trip distribution: using the same data on land-use and travel patterns, the location of trip origins 37 
and destinations is estimated and aggregated to traffic analysis zones (TAZs). Freight trips are again 38 
assigned separately from non-freight trips. Data output from the distribution step are matrices of 39 
the freight and non-freight trips by origin-destination (O-D) pairs for all TAZs in the domain.  40 

3. Mode choice: assignment of trips in the O-D matrices created in step 2 to different travel modes. 41 
Non-freight trips are divided amongst passenger cars, SUVs and pickups, public transit (buses and 42 
light and heavy rail), bicycling, and walking. Freight trips are divided amongst large and medium 43 
class trucks (i.e. combination tractor trailer and single-unit trucks, respectively). 44 



4. Route assignment: allocation of trips to individual segments of the relevant transportation network 45 
(roads, heavy/light rail, cycling infrastructure, etc.) using optimization techniques to minimize total 46 
travel delay while satisfying constraints of origin-destination travel demands and link capacities. 47 
Additional details of the CTPS model are available at: 48 
http://www.ctps.org/data/html/studies/other/Travel_Modeling_101.htm 49 
 50 

We utilize the TDM model output consisting of estimated vehicle travel for four representative periods 51 
of a weekday (𝜏): AM peak (6am-10am), mid-day (10am-3pm), PM peak (3pm-7pm), and night (7pm-52 
6am), stratified by vehicle type and road segment direction. The model also provides information on key 53 
characteristics of each segment: its capacity (𝐾) and the coefficients (𝛼 and 𝛽) of its link-performance 54 
function, which follows a modified Bureau of Public Roads volume-delay formulation with free flow 55 
speed 𝑆𝐹𝐹: 56 

𝑆𝑙,𝜏 = 𝑆𝑙
𝐹𝐹(1 + 𝛼𝑙 ⋅ 𝑣𝑙,𝜏/𝐾𝑙)

−𝛽𝑙  (Eqn. S1) 57 

For roads without records in the INRIX database, the above equation was used to impute vehicle speeds 58 

(𝑆𝑙,𝜏). CTPS has developed customized coefficients (𝛼 and 𝛽) for Eqn. S1 that vary according to road 59 
functional class and location within the urban area. These coefficients have been calibrated against 60 
traffic counts and ‘floating car’ data on vehicle speeds at multiple locations across the region. Generally, 61 
the values for 𝛼 range from 0.8 to 1.25, and the values for 𝛽 range from 4 to 5.5. 62 

Simulated traffic volumes are not used directly, as the output of the model does not cover all MRI road 63 
segments, and many local roads are excluded to keep the assignment problem computationally 64 
tractable. For consistency, MRI AADT for each link is taken as the control total, and CTPS model output 65 
used to disaggregate this volume by time of day, travel direction, and vehicle type. Vehicle types are 66 
stratified into five aggregate classes: passenger cars (gasoline powered), passenger trucks (SUVs and 67 
pickups, both gasoline powered), medium-size trucks (gasoline-powered), medium-size trucks (diesel-68 
powered), and heavy trucks (diesel-powered). We aggregate buses into the “heavy truck” vehicle class. 69 
Modeled volumes by vehicle class in each of the four time periods were divided by the modeled total 70 
daily link volume (by direction), generating a vector of shares by vehicle class, direction, and time of day 71 
that were then used to split MRI AADT. MRI road segments missing from the CTPS model were assigned 72 
the characteristics of the nearest modeled road segment belonging to the same functional class. 73 

Hourly Time Structure 74 

To temporally disaggregate MRI AADT we use a large dataset of hourly traffic counts from 62 permanent 75 
traffic recorders (PTRs) across the study region (Massachusetts Department of Transportation 2014). 76 
Counts are obtained from inductive loop sensors embedded in the roadway surface that continuously 77 
monitor traffic throughout the year. For each PTR station we divide the vehicle counts at each hour by 78 
total annual count for the year 2012 to calculate an hourly share. We assign each MRI roadway link the 79 
hourly traffic profile of the closest PTR. Road segments’ hourly traffic volumes are then estimated by 80 
multiplying AADT by 366 days and the hourly share. 81 

Speed Assignment 82 

All MRI links matching INRIX road segments were assigned the INRIX mean hourly speed for each hour of 83 
the year. Computational tractability necessitated aggregation of the raw 5-min INRIX speeds to an 84 
hourly time step. For a link belonging to a particular roadway functional class, free-flow speed was 85 
imputed as the mean of the 85th percentile of speeds calculated for all roads in that functional class in 86 
the INRIX database. The resulting values of 𝑆𝐹𝐹 were assigned to MRI segments missing observations in 87 
the INRIX database.  88 

http://www.ctps.org/data/html/studies/other/Travel_Modeling_101.htm


Emission Factors 89 

Emissions factors were calculated using the latest version of EPA’s Motor Vehicle Emissions Simulator 90 
(MOVES2014). MOVES contains default values for many of the parameters used to determine emission 91 
rates. EPA strongly recommends that users include as much local data as possible when running the 92 
model, so as to minimize biases due to mismatch between the parameter defaults and actual local 93 
parameter values. MOVES’ spatial resolution is limited to the county scale in “inventory” mode, but finer 94 
resolution estimates of emissions can be calculated in “emission factor” mode, which produces an 95 
output table of grams of pollutant emissions per vehicle kilometer travelled (VKT) for a range of vehicles 96 
and fuel types. We generate emissions factors for CO2 as well as four other air pollutants (CO, NO2, NOx, 97 
and PM2.5). 98 

Emissions factors are highly sensitive to the specification of atmospheric conditions, vehicle make, 99 
model, age and fuel, and to the speed of travel, with MOVES requiring inputs characterizing all of these 100 
variables for the study domain (Figures S4,S5). CTPS, in the course of modeling and forecasting the air 101 
quality impacts of regional transportation, has developed a set of dedicated input parameters specific to 102 
Eastern Massachusetts. We use data on the vehicle fleet composition (vehicle type and age) for 103 
Middlesex County, MA derived by CTPS from vehicle registration data obtained from the State Registry 104 
of Motor Vehicles. CTPS also provided us with data on the fuel formulation for motor fuels sold in 105 
Middlesex County, MA. We augment these custom inputs with a table that covers the full range of 106 
meteorological conditions in the year 2012, obtained from NLDAS-2 reanalysis at 0.125° resolution of 107 
gridded hourly surface temperatures at 2 meter elevation and specific humidity. 108 

Meteorological Impacts on Emissions 109 

Meteorological variables required by MOVES are ambient atmospheric temperature and relative 110 
humidity. NLDAS-2 reports hourly 2m air temperature, pressure, and specific humidity, from which we 111 
generated hourly relative humidity using the Clausius-Clapeyron equation. Each grid cell’s hourly 112 
temperature and relative humidity were assigned to its constituent road segments.  113 

We performed MOVES runs to generate emission factors for our target pollutants for every combination 114 
of temperature in 1C intervals, relative humidity in 10 percentage-point intervals, vehicle speed in 5 115 
mph bins, our 5 aggregated vehicle types, and road functional class. The resulting matrix of factors was 116 
merged with our hourly vehicle activity data by assigning every vehicle type’s specific emissions to road 117 
links on the basis of hourly temperature, relative humidity, and speed. The final output consists of 118 
hourly estimates of emissions of the five pollutants of interest for each of the five vehicle types, for each 119 
of the ~280,000 road segments in the domain.  120 

Supplemental Figures 121 

Figure S1 shows the methods for integrating the above data streams to produce hourly emissions 122 
estimates at road-segment scale. Figure S2 shows the comparison of CO2 running emissions from this 123 
study with estimates from the DARTE inventory product for the year 2012. Figure S3 shows the 124 
estimated changes in annual emissions of CO in 2050 resulting from higher mean monthly temperatures 125 
forecast to occur under the IPCC Representative Concentration Pathway 8.5. Figures S4 and S5 show the 126 
variation in MOVES emissions factors for NOx and PM2.5 as a function of temperature, vehicle speed, and 127 
vehicle type. 128 



 129 

Figure S1. Data fusion methodology. The four major input datasets are spatially merged to generate hourly 130 
traffic volumes for 5 vehicle types for each of the 280,424 road segments in the domain, coupled to the hourly 131 
ambient meteorology for each road. Traffic flow speeds are assigned to segments using INRIX data (where 132 
available), or else imputed using Eqn. S1. Emission factors for CO, CO2, NO2, NOx, and PM2.5 are calculated using 133 
MOVES2014 for all combinations of vehicle types, speed intervals, and temperature and humidity regimes, and 134 
then applied to the hourly traffic volumes of each vehicle class accordingly. 135 

 136 

 137 

Figure S2. Comparison of on-road CO2 running emissions between DARTE (A) and our INRIX-based model (B) for 138 
the year 2012. The spatial resolution of DARTE (left panel) is 1km x 1km. The spatial resolution of the INRIX-139 
based model is 100m x 100m. The total estimates for annual CO2 emissions are within 8%, suggesting that 140 
DARTE captures the overall intensity of on-road emissions well, despite not directly accounting for variations in 141 
vehicle speeds or local meteorology. 142 

 143 



 144 

Figure S3. Annual change in CO emissions in 2050 resulting from increases in mean ambient temperature. 145 
Increases of 2.5 – 5% are estimated to occur broadly over the study area. Larger increases of 10 – 25 % or more 146 
are predicted in many localized areas. Small areas may experience modest decreases in CO emissions of ~1-2%. 147 

 148 



 149 

Figure S4. Comparison of MOVES2014 emissions factors for NOx from passenger cars and heavy trucks as a 150 
function of road type, speed and temperature. NOx emission rates are highest at low vehicle speeds for all 151 
vehicle types and road types. However, at low speeds emission rates show opposite trends with temperature for 152 
gasoline-powered passenger cars and diesel-powered heavy trucks. At high temperatures and low speeds, NOx 153 
emissions rates are significantly enhanced for passenger cars, while for heavy trucks colder temperatures at low 154 
speeds are associated with the highest emissions factors. 155 

 156 



 157 

Figure S5. Comparison of MOVES2014 emissions factors for PM2.5 from passenger cars and heavy trucks as a 158 
function of road type, speed, and temperature. MOVES currently does not vary the emissions factors for heavy 159 
truck PM2.5 with temperature. For passenger cars, cold temperatures have a significant positive effect on 160 
emissions across all vehicle speeds, with the largest effect at low speeds. The effect of low speeds on heavy 161 
truck PM2.5 is also significant, with large increases seen at speeds below 35 mph. For cars, the impact of lower 162 
speeds on emissions is most visible on Arterial roads, due to the drive-cycle characteristics MOVES uses for 163 
these roads. 164 

 165 
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