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For hydrocarbon (simplified in this model to
just CH4) concentrations of 1.4 mmol/kg, the
maximum W/R is 64, assuming 100% conver-
sion of CO2 to CH4 and an initial (but high)
CO2 concentration of ~4000 ppm in the base-
ment rocks (37) (fig. S2). This W/R is at the low
end of those predicted from the Sr and Nd
isotopic compositions of LCHF serpentinites
(37); however, the samples from seafloor out-
crops almost certainly have a reaction history
different from that of the rocks directly supply-
ing the present-day fluids at Lost City. More
typical and lower initial basement rock CO2

concentrations would yield lower W/Rs. On the
basis of a system constrained by a 400-ppm
CO2 concentration in the basement rocks (27)
and a conversion of ~50% (as suggested by the
He and CO2 data), we posit that the fluids
feeding the LCHF have reacted with rocks in a
W/R of less than 5 (fig. S2).

Lost City may be just one of many, as yet
undiscovered, off-axis hydrothermal systems.
Hydrocarbon production by FTT could be a
common means for producing precursors of life-
essential building blocks in ocean-floor environ-
ments or wherever warm ultramafic rocks are in
contact with water.
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Prioritizing Climate Change Adaptation
Needs for Food Security in 2030
David B. Lobell,1,2* Marshall B. Burke,1 Claudia Tebaldi,3 Michael D. Mastrandrea,4

Walter P. Falcon,1 Rosamond L. Naylor1

Investments aimed at improving agricultural adaptation to climate change inevitably favor some
crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions
was conducted to identify adaptation priorities, based on statistical crop models and climate
projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern
Africa as two regions that, without sufficient adaptation measures, will likely suffer negative
impacts on several crops that are important to large food-insecure human populations. We also
find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes
of investment institutions.

Adaptation is a key factor that will
shape the future severity of climate
change impacts on food production

(1). Although relatively inexpensive changes,
such as shifting planting dates or switching to
an existing crop variety, may moderate neg-
ative impacts, the biggest benefits will likely
result from more costly measures including

the development of new crop varieties and
expansion of irrigation (2). These adaptations
will require substantial investments by farm-
ers, governments, scientists, and development
organizations, all of whom face many other
demands on their resources. Prioritization of
investment needs, such as through the identifi-
cation of “climate risk hot spots” (3), is there-

fore a critical issue but has received limited
attention to date.

We consider three components to be es-
sential to any prioritization approach: (i) selec-
tion of a time scale over which impacts are most
relevant to investment decisions, (ii) a clear
definition of criteria used for prioritization, and
(iii) an ability to evaluate these criteria across a
suite of crops and regions. Here, we focus on
food security impacts by 2030: a time period
most relevant to large agricultural investments,
which typically take 15 to 30 years to realize
full returns (4, 5).

We consider several different criteria for
this time scale. First is the importance of the

1Food Security and Environment Program, Woods Institute
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International Studies, Stanford University, Stanford, CA
94305, USA. 2Lawrence Livermore National Laboratory
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Institute for the Environment, Stanford University, Stan-
ford, CA 94305, USA.
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crop to a region’s food-insecure human pop-
ulation [hunger importance (HI)]. Second is
the median projected impact of climate change
on a crop’s production by 2030 (indicated by
C50), assuming no adaptation. For this anal-
ysis, we generate multiple (i.e., 100) projec-
tions of impacts based on different models of
climate change and crop response, in order to
capture relevant uncertainties. The projections
are then ranked, and the average of the 50th
and 51st values are used as the median. A third
criterion is the fifth percentile of projected im-
pacts by 2030 (where C05 indicates the fifth
value of the ranked projections), which we
use to represent the lower tail or “worst case”
among the projections. Finally, we consider
the 95th percentile of projected impacts by
2030 (where C95 indicates the 95th value of
the ranked projections), which we use to rep-
resent the upper tail or “best case” among the
projections.

We first identified 12 major food-insecure
regions, each of which (i) comprise groups
of countries with broadly similar diets and
agricultural production systems and (ii) con-
tain a notable share of the world’s malnour-
ished individuals as estimated by the Food
and Agriculture Organization (FAO) (Table 1;
see fig. S1 for details on regions). For each
region, we computed the HI value for each
crop by multiplying the number of malnour-
ished individuals by the crop’s percent contri-
bution to average per capita calorie consumption
[see supporting online material (SOM) Text
S1 and table S1]. A hunger importance rank-
ing (HIR) was then generated by ranking the
HI values for all crop-by-region combinations.
Rice, maize, and wheat contribute roughly
half of the calories currently consumed by the
world’s poor and only 31% of the calories
consumed by those in sub-Saharan Africa, il-
lustrating the importance of considering ad-
ditional crops in food security assessments.
The use of projected malnourished popula-
tions in 2030 rather than current population
values had a very small influence on the rank-
ings (table S2).

Several options exist for evaluating climate
change impacts across a suite of crops and
regions (SOM Text S2). We used data sets on
historical crop harvests (6), monthly tempera-
tures and precipitation, and maps of crop lo-
cations to develop statistical crop models for
94 crop-region combinations spanning the 12
study regions (see SOM Text S3; results sum-
marized in Table 1). Of these combinations, 46%
(43) exhibited a statistically significant model
(P < 0.05), and 22% (21) had a model R2 of at
least 0.3. As seen in the examples for wheat in
South and West Asia (fig. S3), in some cases
the model’s strength came primarily from a
(typically negative) temperature effect on yield,
whereas, in other cases, a (typically positive)
rainfall effect provided most of the explanatory
power.

The crop temperature sensitivities estimated
by the statistical models were compared with
corresponding values from previous studies that
relied on established process-basedmodels within
the same regions (SOM Text S4). Our statistical
estimates generally overlapped the lower end of
the range of previous estimates, indicating that
impacts estimated by the statistical models may
be considered conservative but in reasonable
agreement with estimates from process-based
approaches.

To project climate changes for the crop re-
gions, along with their uncertainties, we used out-
put from 20 general circulation models (GCMs)
that have contributed to the World Climate
Research Programme’s Coupled Model Inter-
comparison Project phase 3 (WCRP CMIP3) (7).
Median projections of average temperature change
from 1980–2000 to 2020–2040 were roughly

1.0°C in most regions, with few models project-
ing less than 0.5°C warming in any season and
some models warming by as much as 2.0°C
(Fig. 1A). In contrast to the unanimous warm-
ing, models were mixed in the direction of
simulated precipitation change. All regions had
at least one model with positive and one model
with negative projected precipitation changes,
with median projections ranging from about
–10% to +5% (Fig. 1B). Some relevant ten-
dencies of current GCMs, as noted in (8), are
toward precipitation decreases during Decem-
ber to February (DJF) in South Asia and Cen-
tral America, precipitation decreases in June to
August (JJA) in Southern Africa, Central Amer-
ica, and Brazil, and precipitation increases in DJF
in East Africa.

We estimated a probability distribution of
production changes for 2030 (the average from

Table 1. Regions evaluated in this study and selected summary statistics. Countries within each
region are indicated in the SOM.

Region Code
Malnourished

Crops
modeled

Crops with
significant model*Millions

of people
World

total (%)

South Asia SAS 262.6 30.1% 9 7
China CHI 158.5 18.2% 7 2
Southeast Asia SEA 109.7 12.6% 7 4
East Africa EAF 79.0 9.1% 10 2
Central Africa CAF 47.6 5.5% 8 0
Southern Africa SAF 33.3 3.8% 8 6
West Africa WAF 27.5 3.2% 8 2
Central America and Caribbean CAC 25.4 2.9% 5 2
Sahel SAH 24.9 2.9% 7 7
West Asia WAS 21.9 2.5% 10 4
Andean region AND 21.4 2.5% 9 3
Brazil BRA 13.5 1.6% 6 4
Total ALL 825.3 94.7% 94 43
*A model was judged significant if it explained more than 14% of variance in yield or production (R2 > 0.14). This threshold
was based on the 95th percentile of the R2 statistic from a Monte Carlo experiment, which computed 1000 multiple regression
models for a randomly generated 42-year time series with two random predictor variables.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

CHI
SAS
SEA
WAS
WAF
SAH
CAF
EAF
SAF
BRA
AND
CAC

−30 −20 −10 0 10 20 30

−30 −20 −10 0 10 20 30

CHI
SAS
SEA
WAS
WAF
SAH
CAF
EAF
SAF
BRA
AND
CAC

Temperature Change (°C) Precipitation Change (%)

A B

Fig. 1. Summary of projected (A) temperature (°C) and (B) precipitation (%) changes for 2030 (the
averages from 2020 to 2039 relative to those from 1980 to 1999) based on output from 20 GCMs and three
emission scenarios. Gray boxes show DJF averages and white boxes show JJA averages. Dashed lines extend
from 5th to 95th percentile of projections, boxes extend from 25th to 75th percentile, and the middle
vertical line within each box indicates the median projection.
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2020 to 2039 relative to that from 1980 to 1999)
for each crop using a Monte Carlo procedure
that propagated both climate and crop uncertain-
ties (9). To facilitate comparison between crops
and regions, we expressed production changes
for all crops as a percentage of average values for

1998 to 2002. The impact projections are sum-
marized in Fig. 2.

For simplicity, we consider three general
classes of projections. First, several projections
(e.g., Southern Africa maize and wheat) are
consistently negative, with an estimated 95%

or greater chance that climate changes will
harm crop production in the absence of adap-
tation (C95 < 0). These cases generally arise
from a strong dependence of historical pro-
duction variations on temperature, combined
with projected warming large enough to over-
whelm the uncertain impacts of precipitation
changes.

Second, there are many cases with large
uncertainties, with model impacts ranging from
substantially negative to positive (e.g., South
Asia groundnut, Southern Africa sorghum). These
cases usually arise from a relatively strong de-
pendence of historical production on rainfall,
combined with large uncertainties in future pre-
cipitation changes. More precise projections of
precipitation would therefore be particularly
useful to reduce impact uncertainties in these
situations. Large uncertainties also arise in some
cases (e.g., cowpea in East Africa) from an es-
timated production response to historical tem-
perature that is strongly negative but also highly
uncertain.
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Production Impact (%)

Fig. 2. Probabilistic projections of production impacts in 2030 from climate change
(expressed as a percentage of 1998 to 2002 average yields). Red, orange, and yellow
indicate a HIR of 1 to 30 (more important), 31 to 60 (important), and 61 to 94 (less

important), respectively. Dashed lines extend from 5th to 95th percentile of
projections, boxes extend from 25th to 75th percentile, and the middle vertical line
within eachbox indicates themedianprojection. Region codes are defined in Table 1.

Table 2. Crop priority lists based on different criteria. C05 = 5th percentile of projected impacts
(5th lowest out of 100 projections); C50 = 50th percentile (median); C95 = 95th percentile. Results
are shown only for the HIR = 1 to 30 and HIR = 31 to 60 categories.

HIR value Criterion Crops

1 to 30 C05 < –10% South Asia millet, groundnut, rapeseed; Sahel sorghum; Southern
Africa maize

C50 < –5% South Asia rapeseed; Southern Africa maize
C95 < 0% South Asia wheat; Southeast Asia rice; Southern Africa maize

31 to 60 C05 < –10% Southeast Asia soybean; West Asia rice; Western Africa wheat, yams,
groundnut; Sahel wheat; East Africa sugarcane; Southern Africa wheat,
sugarcane; Brazil wheat, rice; Andean Region wheat; Central America rice

C50 < –5% Southeast Asia soybean; West Asia rice; Western Africa yams, groundnut;
Sahel wheat; Southern Africa wheat, sugarcane; Brazil wheat

C95 < 0% Western Africa groundnut; Sahel wheat; Southern Africa wheat; Brazil
wheat, rice; Central America wheat, rice
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Finally, there are many cases characterized
by a narrow 90% confidence interval of im-
pacts within ±5% of zero. In a few cases, such
as wheat in West Asia, this reflects a strong
effect of historical rainfall variations (fig. S1),
combined with a relatively narrow range of
rainfall projections during the growing season
(Fig. 1; West Asia wheat is grown in DJF). In
most cases, such as cassava in West Africa,
the narrow confidence intervals result from a
relatively weak relationship between historical
production and growing-season climate. There-
fore, we can only say that the likely impacts
appear small, given the current data sets and
models used to describe crop responses to cli-
mate. In cases with low model R2, approaches
other than the FAO-based regression models
used here may be more appropriate.

Based on the above projections, we iden-
tified a small subset of crops that met differ-
ent prioritization criteria (Table 2). First, crops
were separated into groups of “more impor-
tant” (HIR = 1 to 30), “important” (HIR = 31
to 60), and “less important” (HIR = 61 to 94).
Within each category, we identified crops be-
low three thresholds: the first corresponding to
instances where at least 5% of the models
predicted greater than 10% loss of production
(C05 < –10%), the second to where at least
half the models projected greater than a 5%
production loss (C50 < –5%), and the third to
where at least 95% of the models predicted
some production loss (C95 < 0%).

Although several crops met more than one
of these criteria, such as maize in Southern
Africa and rapeseed in South Asia, the vary-
ing estimates of uncertainty for different crops,
in general, resulted in noticeable differences
when prioritizing crops on the basis of the
three different thresholds (Table 2). For exam-
ple, a relatively weak relationship was found
between values at the two tails of the projec-
tion distributions—C05 and C95—across all
crops (fig. S4). This result indicates a need to
explicitly consider uncertainty and risk atti-
tudes when setting priorities, which is an issue
that has received limited attention (10).

Because attitudes toward risk differ, and
given that impact projections for some crops
are more uncertain than those for other crops,
various institutions might derive different pri-
orities from the results in Table 2. For exam-
ple, one set of institutions might wish to focus
on those cases where negative impacts are
most likely to occur, in order to maximize the
likelihood that investments will generate some
benefits. By this criterion (C95 < 0%), South
Asia wheat, Southeast Asia rice, and Southern
Africa maize appear as the most important crops
in need of adaptation investments.

Others might argue that adaptation activities
that do not account for worst-case projections
will be inadequate in the face of low-probability,
high-consequence climate impacts: that is to say,
investments should target those crops and re-

gions for which some models predict very nega-
tive outcomes. A different subset of crops is
identified for this criterion (C05 < –10%), with
several South Asian crops, Sahel sorghum, and
(again) Southern Africa maize appearing as the
most in need of attention.

Either of these risk attitudes could be applied
with an explicit regional focus. For a sub-
Saharan African institution interested in invest-
ing where negative impacts are most likely to
occur [where median impact projections are sub-
stantially negative (C50 < –5%) or where most
climate models agree that negative impacts are
likely to occur (C95 < 0%)], priority investments
would include SouthernAfricamaize, wheat, and
sugarcane, Western Africa yams and groundnut,
and Sahel wheat.

Despite the many assumptions and un-
certainties associated with the crop and cli-
mate models used (SOM Text S5), the above
analysis points to many cases where food
security is clearly threatened by climate change
in the relatively near-term. The importance of
adaptation in South Asia and Southern Africa
appears particularly robust, because crops in
these regions appear for all criteria consid-
ered here (Table 2). The results also highlight
several regions (e.g., Central Africa) where
climate-yield relationships are poorly captured
by current data sets, and therefore future work
in this regard is needed to inform adaptation
efforts.

Impacts will likely vary substantially with-
in individual regions according to differences
in biophysical resources, management, and other
factors. The broad-scale analysis presented here
was intended only to identify major areas of
concern, and further studies at finer spatial
scales are needed to resolve local hot spots
within regions. Consideration of other social
and technological aspects of vulnerability, such
as the existing adaptive capacity in a region or
the difficulty of making adaptations for spe-
cific cropping systems, should also be inte-
grated into prioritization efforts. Although we
do not attempt to identify the particular adap-
tation strategies that should be pursued, we
note that, in some regions, switching from high-
ly impacted to less impacted crops may be one
viable adaptation option. In this case, the iden-
tification of less impacted crops is another val-
uable outcome of a comprehensive approach
that simultaneously considers all crops relevant
to the food-insecure.
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