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Consider This… 
       We live in a society where access to information is ubiquitous. 
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Motivation: Indoor Localization 
 

• Personalized local information 
 Augmented knowledge of surroundings 

 Targeted advertisement 

 Indoor navigation 
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• Communication Systems 
 Handover in VLC or heterogeneous networks 

 Traffic routing based on dynamic traffic patterns 

• We propose a novel state estimation model 
 Approximates user location and motion path 

 Predicts future state through use of recursive estimation 



 5
 
 
 
 
 
  

Visible Light Communication (VLC) 
 

• Intensity Modulation /  
 Direct Detection (IM/DD) 
 

• Dual Purpose System 
 Fully functional lighting system 
 Wireless data communication 

 

• Benefits 
 Dual use 
 Secure connections 
 Unregulated spectrum 
 Signal Directionality 
 High bandwidth density 
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20 Mb/s 

20 Mb/s 

20 Mb/s 20 Mb/s 
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VLC Channel Model 
 

• Transmitted power, 𝑃𝑡, distance, 𝐷, receiver area, 𝐴𝑟, and angle at 
the transmitter and receiver account for LOS received power. 
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• LEDs and photodiodes have an angle dependent 
gain typically modeled as 

 
 

𝑻 𝝓 = 𝒏+𝟏
𝟐𝟐

𝒄𝒄𝒄𝒏 𝝓        𝒈 𝜽 = 𝒄𝒄𝒄 𝜽  

𝑷𝒓 =
𝑷𝒕𝑻 𝝓 𝑨𝒓𝒈 𝜽

𝑫𝟐  
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VLC Network Considerations 
 

• Fast and accurate handover protocols are necessary to maintain 
connectivity throughout the environment. 
 HHO: Transfer between VLC channels 
 VHO: Transfer between media (e.g. VLC to RF) 

 

• RSI allows for basic handover methods, but motion tracking 
provides an opportunity for predictive methods. 
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Vertical Handover (VHO) Horizontal Handover (HHO) 
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Kalman Filtering 
 

• Discrete time linear state models can be employed to describe 
the behavior of dynamic systems. 
 
 

• Kalman Filters observe a series of noisy measurements, then 
recursively estimate the system state and predict the next state. 

1. Initialization 
2. Prediction 

 

• Since measurement in our system is non-linear, we observe 
extensions of the basic KF. 

• Extended Kalman Filter (EKF)  
• Unscented Transform (UT)  
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3. Measurement 
4. Update 

𝒙 𝑡 + 1 = 𝑨𝑥 𝑡 + 𝑮𝑤 𝑡   𝑦 𝑡 = 𝑪𝑥 𝑡 + 𝑯𝑣 𝑡  
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System Model 
 

• Empty 6m X 6m X 4m room with grid or cell layout. 
• New user location is normally distributed with 

expected value below a hotspot. 
• Users move with zero mean acceleration in the 𝑥 

and 𝑦 direction. 
• Observe a linear state model, 𝒙 𝑡 , with transition 

matrix, 𝑨, and nonlinear measurement, 𝒚. 

 
• Process noise, 𝒘, and measurement noise, 𝒗, are 

independent, zero-mean, Gaussian white noise with 
covariance matrices 𝑸 and 𝑹, respectively. 

𝒙 𝑡 + 1 = 𝑨𝒙 𝑡 + 𝒘 𝑡             𝒚 𝑡 = ℎ 𝒙 𝑡 , 𝑡 + 𝒗 𝑡  
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System Model – Scenario I 
 

• Receiver is directed perpendicular to floor, such that 𝜙 = 𝜃. 

• State represents position and velocity in 𝑥 and 𝑦. 
• Measurement observes signal power from the set of transmitters. 
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𝒙 = 𝑥,𝑉𝑥 ,𝑦,𝑉𝑦
′
       𝒚 = 𝑃𝑟,1𝑗 ,𝑃𝑟,2𝑗 , … ,𝑃𝑟,9𝑗

′ + 𝒗 𝑡  
𝑨𝐼 =

1 𝑑𝑡 0 0
0 1 0 0
0 0 1 𝑑𝑡
0 0 0 1

 

 

𝑸𝐼 = 𝑞 ∙

𝑑𝑡3

3
𝑑𝑡2

2
0 0

𝑑𝑡2

2
𝑑𝑡 0 0

0 0
𝑑𝑡3

3
𝑑𝑡2

2

0 0
𝑑𝑡2

2
𝑑𝑡

 

 

𝑹𝐼 = 𝑟𝑠𝑠𝑠 ∙ 𝐼9𝑥9 

• 𝑃𝑟,1𝑗 is dependent on 𝜙𝑠𝑗, 𝜃𝑠𝑗, and 𝐷𝑠𝑗. 

𝐷𝑠𝑗2 = 𝑋𝑠 − 𝑥 2 + 𝑌𝑠 − 𝑦 2 + 𝑍𝑠 − 𝑧 2 
 

𝜙𝑠𝑗 = 𝜃𝑠𝑗 = arctan
𝑋𝑠 − 𝑥 2 + 𝑌𝑠 − 𝑦 2

𝑍𝑠 − 𝑧
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System Model – Scenario II 
 

•  Incorporate device rotation in the state model. 
 
 
 
 

• The acceptance angle, 𝜃𝑠𝑗, is now dependent on 𝜃𝑒𝑒 and 𝜃𝑎𝑎. 
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𝒙 = 𝑥,𝑉𝑥 ,𝑦,𝑉𝑦,𝜃𝑒𝑒 ,𝜃𝑎𝑎
′
 

 

𝑨𝐼𝐼 =
𝐴𝐼 0�

0� 1 0
0 1

 𝑸𝐼𝐼 =
𝑄𝐼 0�

0� 𝑞𝜃 𝑑𝑡 0
0 𝑞𝜃 𝑑𝑡

 

𝑉𝑟𝑥 = cos 𝜃𝑒𝑒 ∙ sin 𝜃𝑎𝑎 , sin 𝜃𝑒𝑒 ∙ sin 𝜃𝑎𝑎 , cos 𝜃𝑎𝑎  
 

𝑉𝑡𝑥,𝑠 = 𝑋𝑠 − 𝑥 , 𝑌𝑠 − 𝑦 , 𝑍𝑠 − 𝑧  
 

cos 𝜃𝑠𝑗 =
𝑉𝑟𝑥 ∙ 𝑉𝑡𝑥,𝑠

𝑉𝑟𝑥 𝑉𝑡𝑥,𝑠
 

Tx 

θ 
𝑉𝑟𝑥 𝑉𝑡𝑥 
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System Model – Scenario III 
 

• Additional measurements for 𝜃𝑒𝑒 and 𝜃𝑎𝑎 are included. 
 
 

 
• We aim to show that additional sensors (e.g. accelerometers or 

gyroscopes) can improve performance in a realistic scenario. 
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𝒚 = 𝑃𝑟,1𝑗 ,𝑃𝑟,2𝑗 , … ,𝑃𝑟,9𝑗 ,𝜃𝑒𝑒 ,𝜃𝑎𝑎
′ + 𝒗 𝑡  

 

𝑹𝐼𝐼𝐼 = 𝑹𝐼 0�
0� 𝑟𝜃 ∙ 𝐼2𝑥2
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Results 
 

• We first observe Cramer Rao Bounds (CRB) for the simulated data. 
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Cramer Rao Bounds for multiple sampling rates Cramer Rao Bounds for multiple transmitter orders 
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Results 
 

• We next compare estimations to the actual position and velocity. 
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Simulation results for the Extended Kalman Filter Simulation results for the Unscented Filter 
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Results 
 

• Cellular and grid layouts show similar performance; however the 
initial distribution in the cellular scenario was not located directly 
below a transmitter. 
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Simulation results comparing grid and cellular layouts 
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Results 
 

• Scenario II shows a significant performance loss over Scenario I; 
however the additional sensors in Scenario III provide similar 
performance to that of Scenario I. 
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Simulation results comparing scenarios I, II, and III 
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Conclusions 
 

• We have provided a novel state estimation model leveraging the 
lighting infrastructure to approximate user location and motion 
under realistic conditions. 

• Simulation results on an empty room show position and velocity 
results with average error of 5cm and 10cm/s, respectively. 

• We recognize that additional complexities occur due to dynamic 
signal conditions from obstructions and signal reflections. 

• Non-ideal luminaire output 
• Receiver Optics 

• Results are applicable for positioning systems and asset tracking 
as well as assisted handover or beam steering for indoor VLC 
networks 
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• Multipath Signals 
• User obstruction 
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Questions 
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Table of Parameters 
 

 

STATE ESTIMATION AND MOTION TRACKING FOR  
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Parameter Phase I Phase II / III 
System Parameters 

𝑃𝑡 (W) 5 5 
𝐴𝑟 (mm2) 300 300 

dt (ms) 0.2, 0.5, 1 0.2 
n 1,2,3,4 1 

Initial Expectations 
E[x,y] (m) [0.99, 0.99] [0.99, 0.99] 

E[Vx,Vy] (m/s) [0.8, 0.8] [0.8, 0.8] 
E[θel,θaz] (°) - [0,0] 
Σ[x,y] (m) [0.5,0.5] [0.5,0.5] 

Σ[Vx,Vy] (m/s) [0.2,0.2] [0.2,0.2] 
Σ[θel,θaz] (°) - [ 𝜋

180
, 𝜋
4

] 
Noise Parameters 

rsig 3.5 ∙ 10−8 3.5 ∙ 10−8 

rθ - 
𝜋

360 

q 10−2 10−2 

qθ - 
𝜋

360 
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Kalman Filter Details 
 

• Prediction 
 
 

 

• Estimation 
 
• Innovations 

 
• Kalman Gain 
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𝒙𝑡+1|𝑡 = 𝑨𝒙𝑡|𝑡 + 𝑩𝑢 𝑡 + 𝑮𝐸 𝑤 𝑡  
𝚺𝑡+1|𝑡 = 𝑨𝚺𝑡|𝑡𝑨𝑇 + 𝑮𝑸𝑮𝑇 

𝒚𝑡+1|𝑡 =  𝑪𝒙𝑡|𝑡 + 𝑫𝑢 𝑡 + 𝑯𝐸 𝑣 𝑡  

𝒙𝑡+1|𝑡+1 = 𝒙𝑡+1|𝑡 + 𝑲𝑡+1𝒗𝑡+1 
𝚺𝑡+1|𝑡+1 = 𝑰 − 𝑪𝑲𝑡+1 𝚺𝑡+1|𝑡 

𝒗𝑡+1 = 𝒚𝑡+1 − 𝒚𝑡+1|𝑡 

𝑲𝑡+1 = 𝚺𝑡+1|𝑡𝑪𝑇 𝑪𝚺𝑡+1|𝑡𝑪𝑇 + 𝑅
−1
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