Globecom 2012 Workshop OWC

Performance Analysis of Multi-pulse PPM for Optical Wireless Hierarchical Transmission System

Yusuke Kozawa, Tokyo university of Science, japan Hiromasa Habuchi, Ibaraki university, japan

3 December 2012

- * Optical wireless broadcasting
- * Hierarchical transmission system
- * Proposed hierarchical MPPM system
 - Transmitter and symbol structure
 - PN Codes for MPPM and CNK
 - Receiver and symbol detection
- * Evaluation
 - Data transmission rate(DTR)
 - Symbol error rate(SER)
- * Conclusion

* Optical wireless broadcasting * Hierarchical transmission system * Proposed hierarchical MPPM system • Transmitter and symbol structure PN Codes for MPPM and CNK Receiver and symbol detection * Evaluation Data transmission rate(DTR) • Symbol error rate(SER) * Conclusion

*Optical wireless (OW) broadcasting

Advantages

- ✓ High information capacity
- Worldwide available and unlicensed bandwidth
- ✓ Does not interfere with radio bands

Promising supplement to already existing wireless RF technologies.

• <u>OW hierarchical Transmission system for ITS</u>

[Yamazato,2007][Oka, 2008]

- the broadcasted messages can be divided into two or more classes according to its importance.
- The important information(Data1) must be recovered by all receivers.

The less important information(Data2) can only be recovered by the "fortunate" receivers.

Data1

Data1+Data2

Data1

Data2

*Hierarchical transmission system

Ways to realize the Optical wireless Hierarchical transmission

We focus on the Fusion modulation (most simple way).

*We propose <u>new hierarchical MPPM</u> modulation.

*Moreover, we evaluate the proposed system taking into account optical wireless noises.

*MPPM : Multi-pulse Pulse Position Modulation

* Optical wireless broadcasting * Hierarchical modulations

* Proposed hierarchical MPPM system

- Transmitter and symbol structure
- PN Codes for MPPM and CNK

Receiver and symbol detection

* Evaluation

• Data transmission rate(DTR)

• Symbol error rate(SER)

* Conclusion

*Transmitter and symbol structure

Combine multi-pulse PPM (MPPM) with code number keying (CNK)

Step 1) According to data1, *m* slots are selected from *M* slots.

Step 2) According to data2, *n* slots are selected from <u>*M-m* slots</u>(no overlap).

Step 3) *m* MPPM codes are generated in the *m* slots,

while *n* CNK codes are generated in the *n* slots.

*Codes for MPPM and CNK

- Modified pseudo orthogonal M-sequence sets (kozawa 2007)
 - For example when code length, L, is 4,

$$\mathbf{PN} = \begin{bmatrix} \mathbf{PN}_1 \\ \mathbf{PN}_2 \\ \mathbf{PN}_3 \end{bmatrix} = \begin{bmatrix} 1,0,1,0 \\ 1,1,0,0 \\ 1,0,0,1 \end{bmatrix}, \quad \overline{\mathbf{PN}} = \begin{bmatrix} \overline{\mathbf{PN}_1} \\ \overline{\mathbf{PN}_2} \\ \overline{\mathbf{PN}_3} \end{bmatrix} = \begin{bmatrix} 0,1,0,1 \\ 0,0,1,1 \\ 0,1,1,0 \end{bmatrix}, \quad \mathbf{RC} = \mathbf{PN} - \overline{\mathbf{PN}} = \begin{bmatrix} +1,-1,+1,-1 \\ +1,+1,-1,-1 \\ +1,-1,-1 \\ +1,-1,-1,+1 \end{bmatrix}$$

Code characteristics

PN RC⁻¹ =
$$\frac{L}{2}E$$
, **PN RC**⁻¹ = $-\frac{L}{2}E$ L : code length
E : unit matrix

- Code for MPPM and CNK ;
 - PN is used for MPPM
 - **PN** is used for CNK
 - RC is used for the reference code at the receiver

*Receiver and symbol detection

Demodulate MPPM data and CNK data individually

Step 1) Received signal is correlated by the reference code in each slot.

- Step 2) MPPM symbol is declared by selecting *m* correlation values, which are larger than the other *M-m* correlation values.
- Step 3) CNK symbol is declared by threshold detection with the magnitude of sum of *M* correlation values.

Proposed system (M=16,m=8,N=4) PN for MPPM (11101000), PN for CNK (00010111)

* Optical wireless broadcasting * Hierarchical modulations * Proposed hierarchical MPPM system • Transmitter and symbol structure PN Codes for MPPM and CNK Receiver and symbol detection * Evaluation Data transmission rate(DTR) Symbol error rate(SER) * Conclusion

*Evaluation : DTR and SER

Comparing the proposed system with the conventional MPPM system

Numerical conditions

Transmitter	Laser wavelength		830 [nm]	OW channel	Scintillation model	Log-normal Turbulence
	Optical clock rate		120 [MHz]		Scintillation logarithm variance	σ_{s}^{2} =0.01
	Code length : L		L=16		Background noise	P _b =-45 [dBm]
	Modulation extinction ratio		100		APD Gain	100
	MPPM	The num.of MPPM slots : M	16,32	Receiver	Quantum efficiency	0.6
		The num.of selected slots : <i>m</i>	1,, <i>M</i> -1		Receiver load resistor	1030 [Ω]
	CNK	The maximum num.of selected slots : N	<i>M-m</i> +1		Receiver noise temperature	1100 [°K] 1

*Result : DTR

Fig.1, DTR vs. m

- ✓ **DTR of the proposed system is better** than that of the conventional MPPM system.
- \checkmark DTR can achieve upper bound when the *m* is half of *M*.
- \checkmark DTR of the conventional MPPM system is decreases when m is larger than half of M_{r4}

*Result : SER vs. Pbit/Pb (M=16, m=8)

Fig.3, SER vs. Pbit/Pb w/ scintillation

Fig.4, SER vs. Pbit/Pb w/o scintillation

*Conclusion

- We proposed the hierarchical MPPM system using PN codes.
- We analyzed and evaluated the proposed system from theoretical analysis.
 - The proposed system can;
 - Improve the data transmission rate compared with the conventional MPPM system.
 - Achieve to SER of conventional MPPM.
 - Transmit MPPM data and CNK data hierarchical because there is the difference between SER of MPPM and SER of CNK.

Future works;

- Evaluation of the system in the parallel transmitter case.
- Comparing with conventional hierarchical systems. 17

Thank you.