Pulse Shaping in Unipolar OFDMbased Modulation Schemes

Dobroslav Tsonev, Sinan Sinanović and Harald Haas

Institute of Digital Communications The University of Edinburgh, UK d.tsonev@ed.ac.uk s.sinanovic@ed.ac.uk h.haas@ed.ac.uk

06/12/2012

OFDM-based Communication System

Discrete time-domain samples need to be mapped to continuous time-domain pulse shapes in order to obtain an analog signal suitable for modulation of a device such as a LED.

Optical Wireless Communication Based on OFDM

- ▶ Real unipolar signals are required for IM/DD systems.
- Real Signals through Hermitian symmetry in frequency: $S(f) = S^*(-f)$
- Unipolar signals are obtained in a variety of ways: DCO-OFDM, ACO-OFDM, PAM-DMT, U-OFDM, Flip OFDM, etc.

Unipolar OFDM (U-OFDM) / Flip OFDM

- Frames are sent in two streams. In the second stream with reversed signs.
- Therefore, $s_p[n] = -s_n[n]$ (Tsonev *et al.*, 2012, Fernando *et al.*, 2011)
 - $s_p[n] =$ Stream with positive samples
 - $s_n[n] =$ Stream with negative samples

U-OFDM/ Flip OFDM Theory

- ▶ In U-OFDM, by design: $s_p[n] = -s_n[n]$
- Original signal is obtained as $s_0[n] = s_p[n] s_n[n]$
- CLIP(s[n]) = (s[n] + |s[n]|) / 2 !!! This representation is important !!!

•
$$s_p[n] = -s_n[n] = |s_p[n]| = |s_n[n]|$$

Therefore, distortion from clipping is completely removed by the subtraction operation.

Going from Digital to Analog Domain

- Samples are represented by pulse shapes
- Different pulse shapes have different time and frequency characteristics

Unipolar vs. Bipolar Pulse Shapes

- Unipolar digital signals combined with unipolar pulse shapes produce unipolar analog signals.
- Unipolar digital signals combined with bipolar pulse shapes produce bipolar analog signals.

Adding a Bias to a Bipolar Signal

- Bipolar analog signals can be made unipolar by introducing a bias as presented below.
- Bias increases power dissipation.

Clipping Negative Values

- Most of the analog signal is positive, so the negative values could be ignored (clipped).
- > This, however, introduces distortion and out-of-band interference.

What if Pulse Shaping is Done Before Clipping?

Discrete bipolar signals are shaped with bipolar pulse shapes and clipping is performed afterwards.

What if Pulse Shaping is Done Before Clipping?

Discrete bipolar signals are shaped with bipolar pulse shapes and clipping is performed afterwards

DINBUCK

Clipping the Negative Values

- The useful signal is kept in the required band.
- Only the distortion term is attenuated by limited channel response.
- The necessary symmetry of the distortion term is kept after pulse shaping and after the channel effects for all three modulations.
- Some distortion is still present. The non-causal response of the pulse-shaping filter disrupts the noise symmetry.

Guard Interval at the End

- A physical communication channel has a **causal** impulse response, which makes a **cyclic prefix** sufficient to maintain orthogonality.
- A band-limited pulse shape like the raised cosine filter has a noncausal impulse response.
- Non-causal pulse shapes disrupt the symmetry of the distortion terms. A second guard interval (cyclic suffix) can mitigate this.

Effect of the Cyclic Suffix

▶ Root-raised cosine filter with rolloff factor of 0.5, 16-QAM, N_{fft}=16

Effect of the Cyclic Suffix

▶ Root-raised cosine filter with rolloff factor of 0.1, 16-QAM, N_{fft}=16

Effect of the Cyclic Suffix

▶ Root-raised cosine filter with rolloff of 0.1, N_{fft}=32, 256-QAM

- S[k] = signal in frequency domain
- $\overline{S}[k]$ = distorted signal in frequency domain

Signal-to-Distortion Ratio (SDR) =
$$\frac{E[S^{2}[k]]}{E[(S[k] - \overline{S}[k])^{2}]}$$

SDR in Different Scenarios *

N _{fft}	ACO-OFDM SDR [dB]		PAM-DMT SDR [dB]		U-OFDM SDR [dB]	
	Prefix Only	Prefix & Suffix	Prefix Only	Prefix & Suffix	Prefix Only	Prefix & suffix
32	27.33	39.19	29.15	41.61	28.7	40.69
64	30.5	42.26	32.46	44.76	31.01	43
256	36.6	48.33	38.2	50.19	36.72	48.38

! Cyclic suffix provides 12 dB improvement in SDR !

*Root-raised cosine filter with rolloff factor of 0.1 has been used in these calculations. The QAM constellation size is 256.

- **Discrete unipolar** signals require **unipolar** pulse shapes
- Bipolar pulse shaping can be applied as long as pulse shaping is applied before clipping the negative values.
- After pulse shaping, distortion terms still retain required symmetry to stay orthogonal to the useful information.
- Non-causal pulse shapes disrupt the symmetry of the distortion terms. A second guard interval (cyclic suffix) can mitigate this.

Thank you very much for the attention !

- Demands for wireless data rates are growing exponentially. In 2015, more than 6 Exabytes of data are expected to be sent globally.
- RF spectrum is insufficient for growing demands. New physical domains for Wireless Communications are desirable.
- Optical wireless communication is a potential solution to the emerging spectrum problem.

Asymmetrically Clipped Optical OFDM (ACO-OFDM)

- Only odd carriers are modulated. This leads to a symmetry in time domain: s[n] = -s[n+N/2] (Armstrong et al., 2006)
 - N = number of carriers/number of FFT points
 - s[n] = time domain signal

ACO-OFDM Theory

- Odd carriers only contain information <=> s[n] = -s[n+N/2]
 Even carriers only contain information <=> s[n] = s[n+N/2]
- CLIP(s[n]) = (s[n] + |s[n]|) / 2 !!! This representation is important !!!
- ▶ In ACO-OFDM, *s*[*n*] = *s*[*n*+*N*/2] => |*s*[*n*]| = |*s*[*n*+*N*/2]|
- > Therefore, distortion from clipping falls only on the even subcarriers.

Pulse-amplitude-modulated Discrete Multitone Modulation (PAM-DMT)

- Carriers are modulate with imaginary symbols only. This leads to a symmetry in time domain: s[n] = -s[N-n] (Lee et al., 2009)
 - *N* = number of carriers/number of FFT points
 - s[n] = time domain signal

- Carriers are modulated with imaginary symbols <=> s[n] = -s[N-n]
 Carriers are modulated with real symbols <=> s[n] = s[N-n]
- CLIP(s[n]) = (s[n] + |s[n]|) / 2 !!! This representation is important !!!
- ▶ In PAM-DMT, s[n] = -s[N-n] => |s[n]| = |s[N-n]|
- Therefore, distortion from clipping falls only on the real values in frequency domain.