1EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 10, OCTOBER 1999

1615

Single Integral Equation for
Electromagnetic Scattering by Three-Dimensional
Homogeneous Dielectric Objects

Michael S. Yeung

Abstract— A single integral equation formulation for elec-
tromagnetic scattering by three-dimensional (3-D) homogeneous
dielectric objects is developed. In this formulation, a single
effective electric current on the surface S of a dielectric object
is used to generate the scattered fields in the interior region.
The equivalent electric and magnetic currents for the exterior
region are obtained by enforcing the continuity of the tangential
fields across S. A single integral equation for the effective electric
current is obtained by enforcing the vanishing of the total field
due to the exterior equivalent currents inside S. The single
integral equation is solved by the methed of moments. Numerical

" results for a dielectric sphere obtained with this method are
in good agreement with the exact results. Furthermore, the
convergence speed of the iterative solution of the matrix equation
in this formulation is significantly greater than that of the coupled
integral equations formulation.

Index Terms— Boundary integral equations, electromagnetic
scattering, method of moments.

I. INTRODUCTION

URFACE integral equations are widely used to solve

problems of electromagnetic scattering by an interface 5
between two homogeneous regions of space [1]. If one of
the regions is a perfect electric conductor, it is sufficient to
find the electric current on S by solving a single integral
equation such as the electric field integral equation (EFIE),
magnetic field integral equation (MFIE), or combined field
integral equation (CFIE) [2]. In the case of dielectric media,
the usual procedure is to solve a pair of coupled integral
equations for the equivalent electric and magnetic currents on
S [3]. Such a doubling in the number of unknowns may be
undesirable due to increased computation time and storage
requirement.

Maystre [4] first showed how a single unknown function
on S can be employed to solve the problem of electro-
magnetic diffraction by a two-dimensional dielectric grating.
Marx [5], [6] generalized Maystfe’s method to the scattering
of an electromagnetic wave with arbitrary time dependence
by a three-dimensional (3-D) dielectric object. Glisson [7]
presented a single integral equation for 3-D dielectric objects
in the frequency domain using the equivalence principle.
However, no numerical results were given by Marx or Glisson.
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Fig. 1. Homogeneous dielectric object (g2, p2) embedded in a homoge-
neous medium (1, 1 ). (J, M) are the equivalent currents for the exterior
region. Jogr is a single effective electric current for the interior region.

In this paper, an alternative single integral equation for 3-
D dielectric objects in the frequency domain is discussed.
Furthermore, the single integral equation is solved by the
method of moments and numerical results are presented.

The formulation of the single integral equation is discussed
in Section II. The expansion of the surface current densities
in triangular-patch basis functions is discussed in Section IIL
The solution of the single integral equation by the method of
moments is discussed in Section IV and numerical results for
a dielectric sphere are presented in Section V. The problem of
internal resonance is discussed in Appendix B.

II. SINGLE INTEGRAL EQUATION FORMULATION

Referring to Fig. 1, let S denote the surface of a 3-D
homogeneous dielectric object illuminated by an incident plane
wave. The regions exterior and interior to the object are
characterized by material parameters (u;,€1) and (12,€2),
respectively. The total fields (E1,H;) in the exterior region
are given by the sums of the incident fields (Ei¢, H'*°) and
the fields radiated by a set of equivalent currents (J, M) on S

El = Einc + Ei(J’ M)|outsides (1)

Hl = Hi“C + I:Ii (J’ M)IoutsideS (2)
where £ and_I:Ii are integral operators for the exterior region.
The explicit forms of these integral operators are given in
Appendix A. By the equivalence principle, the equivalent
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currents are related to the total tangential fields on S by

€)
“

J=nx Hl |justoutside5
M=-nx E]_I

just outside S~
where n is the unit normal to S pointing out of the object.

Taking into account the discontinuous behavior of the
integral operators E{ and I:Ii‘ across S (the jump condition),
(3) and (4) imply that the quantities defined by (1) and (2)
vanish everywhere inside the object

B+ B{ (1, M) 05 = 0 )
CH + H (3, M) =0. (6)

insideS ~

In the usual coupled integral equations method [3], the fields
(Es,H3) in the interior region are expressed in terms of the
same pair of equivalent currents (J, M), but with the opposite
sign by

E, = B3(~J,-M)|
H2 = I:I;(—'L —M)l

inside S (7)
inside S (8)
where E§ and I:I§ are integral operators for the interior

region. Alternatively, the fields in the interior region can be
represented by a single effective electric current J.g

EZ = E;(Jeﬂ" O)Iinside S (9)

H; = ﬁg(Jeff’O)linsideS 19

or by a single effective magnetic current Meg
E) = Eg (Ov Meﬁ-)linsides (b
H; = ﬂ;(O’MeH)iinsideS' (12)

It should be noted that the effective current Jog or Meg
radiates the correct fields only in the interior region. That the
representation (9) and (10) or the representation (11) and (12)
is plausible is suggested by the fact that the fields (Eq, Hy)
given by (9) and (10) or by (11) and (12) certainly satisfy
Maxwell’s equations for the interior region for arbitrary Jeg
or Mcg. It remains to show that the necessary boundary
conditions can also be made to be satisfied.

In this paper, the representation in terms of the effective
electric current Jog is used. By evaluating the right-hand sides
(RHS) of (9) and (10) at a point just inside S, the tangential
fields just inside S can be found. Then, by enforcing the
continuity of the tangential fields across S, the equivalent
currents (J, M) for the exterior region are obtained

13)
(14)

J=nx H;(Jeﬁ70)|just inside S

M = —-n x E;(Jeff’ O)ljusginsideS'
A single integral equation for Jg is obtained by substituting
(13) and (14) into either the EFIE (5) or the MFIE (6). For
the EFIE, one obtains :
—E"° = B2 [n x H}(Jeq,0), —n x E§(Jeg, 0)]|

inside S

15)
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Fig. 2. Triangle pair (7;}, T;;") associated with the nth edge. Points r, and

n’»en
ry in (T;F, T;;) are measured by the vectors g} and q;, defined with respect
to the vertices O and O}, respectively.

while for the MFIE, one obtains

_Hinc — I:Ii [n X I:I;(Jeﬁ-,O)’ -1 X E;(Jeﬂvo)]‘

inside S*

(16)

In the above two equations, the integral operators I:I§ and Eg
are evaluated at points just inside the object.

Once the effective current Jog has been found by solving
the single integral equation (15) or (16), the fields in the
interior region are found from (9) and (10). The equivalent
currents (J, M) for the exterior region are found from (13)
and (14). The fields in the exterior region are then found from
(1) and (2). In the absence of internal resonance, the fields
so obtained are the correct fields because: 1) the fields in the
interior region satisfy Maxwell’s equations for this region [by
(9) and (10)]; 2) the tangential fields are continuous across
S [by (13) and (14)]; and 3) the fields in the exterior region
satisfy Maxwell’s equations for this region and the boundary
condition at infinity [by (1) and (2)]. In the presence of internal
resonance, however, condition 2) may not hold. This problem
is discussed in Appendix B.

III. CURRENT BASIS FUNCTIONS

In order to transform the single integral equation (15) or
(16) into a matrix equation, the surface S is replaced by a
triangular-patch model and the unknown effective current Jog
is expanded in vector basis functions associated with the edges
of the triangulated surface [8]. Fig. 2 shows two triangles TF
and 7,7 associated with an edge n of the triangular-patch
model of S. Points in T,/ are defined by the position vector
q;t pointing from the vertex O} of T opposite the edge n.
Similarly, points in T}, are defined by the position vector q,;
pointing toward the vertex O, of T, opposite the edge n. A
vector basis function f,, is associated with the edge n

dagt rinT7F

24T
fa.(r) = ﬁ%qg, rin T, amn
0, " otherwise

where [,, is the length of the common edge n and AZ are the
areas of the triangles 7. '
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The effective current Jog is expanded in the vector basis
functions f,

N
r) = &fa(r) (18)
n=1
where N is the total number of edges in the triangular-patch
model of S and &, are the unknown current coefficients.
If the effective current (18) were substituted directly into the

single integral equation (15) or (16), the RHS of the resulting

equation would be difficult to evaluate because of integrations
over the singularities in the integral operators {,H5, and
Es Instead, it is more convenient to expand the argurnents
of the integral operator E{ or H, which are the tangential
fields n x Hy and —n x Eo just inside S in the vector basis
functions f,,. Thus, one writes

an2

ZF
)= Zfznfxr)

where Ey and H, are given by (9) and (10), respectively,
for a point r_ which approaches the point r on S from the
interior region and (I7, I[™) are the expansion coefficients to
be determined.

Let r be a point on triangle 7, which approaches the edge
n and 1, be a unit vector lying along this edge. Also, let n
be the unit normal to 7} pointing out of the object. Using
simple vector identities, one obtains

Ho(r-) 1, = —n- {{n x Hy(r_)] x 1.}

N
=-n- {ZIffi(r) X 1n}

"N
Z (nx1,) fi(r)

where (19) has been employed and use has been made of the
fact that n-1, = 0.

The quantity (n x 1,) - f;(r) in (21) is the component of the
vector basis function f; normal to the common edge n of the
triangles T'F. Since the point r is infinitesimally close to the
edge n, this quantity is nonzero only for 7 = n, as can be seen
by examining the definition (17) of the vector basis function.
Hence, (21) reduces to

Hy(r-) 1, = F(nx1,) f,(r).

19

-n X Eo(r_ (20)

2D

(22)

1t is well-known that the RHS of (22), which is the component
of the vector basis function f, normal to its defining edge n,
is continuous across the edge n [8]. Hence, the RHS of (22)
has a unique limit whether r approaches the edge n from T+
or from T, . Furthermore, this limit is independent of position
along the edge n. Hence, the RHS of (22) is constant along
the edge 7, while the left-hand side of this equation in general
‘varies along the edge n. This inconsistency is due to the fact
that the expansion (19) is only an approximate representation
of the vector field n X H; on the surface S. However, one can
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require (22) to be satisfied in an average sense by integrating
both sides of this equation along the common edge n. This
way, the expansion coefficients I}, for the equivalent electric
current are found to be

1;1:—21—/ A H,(r_) -1
n Jil,

Similarly, the expansion coefficients I for the equivalent
magnetic current are given by

m = i/ Al Ey(r
In )i

In (23) and (24), the direction of the unit vector 1, has been
chosen in such a way that if a right-hand screw through the
triangle T,’f were rotated in the sense of the vector 1,,, it would
advance in the direction of the unit normal n to T

(23)

4

IV. SOLUTION BY THE METHOD OF MOMENTS

In the method of moments, the integral equation to be solved
is tested with respect to suitable testing functions. For the EFIE
(15), the usual testing procedure is to take the dot product of
both sides of this equation with each vector basis function
f,, and integrate the result over the domain of support of f,
[8]. For the MFIE (16), an alternative testing procedure is to
take the dot product of both sides of this equation with the
unit vector 1,, lying along each edge n and integrate the result
along the edge n [9].

To construct the moment-method matrix, the coefficients I?
and I are first computed from the coefficients &;

(] = [fr 16

where I°,I™ and & are length-N column vectors of  the
respective coefficients and W* and W™ are N x N matrices.
The elements of these matrices are obtained by using (9),
(10), (18) (23), and (24), and the known forms of the 1ntegra1
operators Es and H given in Appendix A

(25)

@y U ’ o ’
wWe = —L§.. 4+ = | P v -
ij 5 6”+lip/,dl/j dS'L; - £5(r') x Ga(r — 1)

| (26)
Wgz_”;W / dl/ ds'l; - £;(r)Ga(r — ')
i I; T;
_ .7 IRl (+) !
Deali U, ds' V' £5(x') [Ga (r]" — 1)
~ Gy (e = 1)]. 27

In the above equations, ; is the angle between the planes
of the triangles T+ and T;” measured in the exterior region,

T; =T +T; and P means that the term with ¢ = j is to

be omitted. Also r(+) and r( ) are the two endpoints of the

edge 4, such that the unit vector 1; points from r( ) to r(+)
and Go(r — 1') is the Green’s function for the interior region
' e~ jka|r—r'|

Ga(r-1') = (28)

4rr|r — /|

k, being the wavevector in the interior region.
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Next, the moment-method matrix equation is constructed
from the current coefficients Iy and I

(29)

where U® and U™ are N x N matrices and b is a length-NV
column vector of the incident excitation. For the EFIE (15),
one takes the dot product of both sides of this equation with
each vector basis function f; and integrates the result over the
corresponding triangle pair 7; = T.* + 7. Using (19) and
(20) and the known form of the integral operator Ei given
in Appendix A, the elements of the matrices U*®FIE) apd
U™EFIE) for the EFIE are obtained

Ut = —jwp / ds / S’ £(r)E;(r')
T; T;

| xGl(r-r')+i/ dS/ ds’
weq T T
)

x VE(E)V - £(")Gy(r — 1/ €)

U EF® = / ds / dS'[fi(r) x £;(r')] - VG1(r — 1)
T; T; .
€29

and the excitation vector is given by

pEFIE) / dS EPS(r) - £(r). 32)
T.
In (30) and (31), G1(r — r’) is the Green’s function for the
exterior region
e—-jkllr—r’]

Gl(r - I',) =

T dnr -]

(33)

k; being the wavevector in the exterior region.

For the MFIE (16), one takes the dot product of both sides
of this equation with the unit vector 1; along each edge 7 and
integrates the result along the edge <. Using (19) and (20) and
the known form of the integral operator H; given in Appendix
A, the elements of the matrices U¢MFIE) apd y™(MFIE) for
the MFIE are obtained

e(MFIE) _ @il;
yEMFIE) g-&j—P/dl/ ds'l; - £;(x")
. li Tj .
x VGyi(r —1') (34)
UM - ey / dl / ds'Y; - £(r')Gi(x — 1)
i T;

__‘7_. A v e {+)_ ’
o TdeV £ (") [Gy (r; r')

- Gi(r” )] (35)
and the excitation vector is given by
b.EMFIE) — __/ dl Hinc(r) 1. (36)
L

Combihing (29) and (25), the moment-method matrix equa-
tion for the unknown coefficients &, can be written as

[Z11¢] = [0] (37
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Fig. 3. Triangular-patch model of a dielectric sphere with kya = 1.0. The
number of triangles is 2400 and the number of edges is 3600. The sphere is
illuminated by a plane wave traveling in the 4z direction and polarized with
the electric vector in the x direction.

where Z is an N x N matrix constructed from the product of
an N x 2N and a 2N x N matrix

2] =[U° U™ {We ] . (38)

Wm

The above discussion has been based on the representation
(9) and (10) of the fields in the interior region in terms of an
effective electric current Jo. Alternatively, one can start with
a representation of the scattered fields in the exterior region in
terms of an effective electric current as was done in'[7]. From a
programming point of view, the two approaches are similar in
complexity since the present approach requires the application
of the integral operators E; and I:I§ to the computed effective
current Jeg, in accordance with (13) and (14), in order to
find the scattered field in the exterior region, whereas the:
approach of [7] requires the application of the operator Ej
to the incident equivalent currents (n x H"¢, —n x E™"°)
before the single integral equation is solved, in order to set
up the corresponding excitation vector. However, numerical
experiments have indicated that the present approach based
on the representation (9) and (10) generally leads to greater
convergence speed of the iterative solution, especially for
dielectric objects with large dielectric constants.

Other formulations based on the representation of the inte-
rior or exterior scattered fields in terms of a single effective
magnetic current Mg are also possible. However, numerical
experiments have indicated that such an approach generally
leads to lower convergence speed of the iterative solution than
the approach discussed in this paper.

V. NUMERICAL RESULTS

The single integral equations discussed in the last section
were tested on the problem of electromagnetic scattering of a
plane wave by a dielectric sphere. The surface of the sphere
was modeled by triangular patches with an average side length
A in the range A2/25 < A < A/12, where Ap is the
wavelength inside the sphere. To reduce computation time, the
matrix equation (37) was solved iteratively by the generalized
minimum residual (GMRES) method [10].

The triangular-patch model for a sphere with kja = 1.0
and N = 3600 is shown in Fig. 3, where a is the radius
of the sphere and N is the total number of edges. The
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Fig. 4. Equivalent electric ¢(J) and magnetic (M) currents induced on a dielectric sphere with ez = 4.0 and kya =
results. Dashed lines are the results of the single integral equation method. :
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Fig. 5. Radar cross section of a dielectric sphere with g3 =
kia = 1.0.

4.0 and

computed equivalent electric and magnetic currents induced
on the sphere for 3 = 4.0 are shown in Fig. 4. These
results compare well with the exact results given by the series
solution. Fig. 5 shows the corresponding computed radar cross
section (RCS). Again, there is good agreement with the exact
result.

Fig. 6 illustrates the convergence speeds of the single in-
tegral equation formulations based on the MFIE, EFIE, and
CFIE, respectively, compared with that of the coupled integral
equations formulation of [3], for a dielectric sphere with
g9 = 4.0,k1a = 0.5 and N = 912: The convergence speeds
of the three single integral equation formulations were greater
than that of the coupled integral equations formulation. In
particular, the single integral equation based on the MFIE con-
verged almost two orders of magnitude faster than the coupled

"180 100 0
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Fig. 6. Convergence speeds of the single integral equation formulations
based on the MFIE, EFIE, and CFIE, respectively, compared with the
convergence speed of the coupled integral equations formulation, for a
dielectric sphere with g2 = 4.0 and k1a = 0.5.

integral equations. Unlike the case of a perfectly conducting
object [11], however, the CFIE-based single integral equation
containing 50% of EFIE (o = 0.5) converged much slower
than the MFIE-based single integral equation in the dielectric
case.

As discussed in Appendix B, the singular integral equation
based on the MFIE or EFIE is singular at the resonant
frequencies of a cavity bounded by the surface S of the
dielectric object, but filled with the material of the exterior
region (u1,e1). The singularity of the MFIE-based single
integral equation was investigated by choosing the parameter
kia to correspond to the lowest internal resonance of the
electric type, namely kja = 2.7439. The number of edges
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Fig.7. Radar cross sections of dielectric spheres with €2
magnetic type, respectively, for an empty cavity.

in the corresponding triangular-patch model was N = 4560
for €5 = 2.25. In this case, the MFIE-based single integral
equation was found to converge, but to the wrong solution.
Furthermore, the range of values of kja over which significant
solution error was observed was found to be quite small,
namely, within =1% of the resonant value. The RCS results
for kia = 2.7466, where the solution error was found to be
greatest, are shown in Fig. 7(a). To overcome this problem, the
calculation was repeated for the CFIE-based single integral
equation. A small value of @ = 0.1 was chosen to avoid
significant reduction of the convergence speed as Fig. 6 would
suggest. The corresponding RCS results are also shown in

Fig. 7(a). It can be seen that CFIE-based single integral .

equation effectively eliminated the solution error at resonance.
The above calculations were repeated for the lowest internal
resonance of the magnetic type, for which kja = 4.4934.
The number of edges in the corresponding triangular-patch
model was N = 9552 for €5 = 2.25. The corresponding RCS
results are shown in Fig. 7(b). It can be seen that the CFIE-
based single integral equation again effectively eliminated the
solution error produced by the MFIE-based single integral
equation at resonance. It is of interest to note that a small value
of o = 0.1 in the CFIE actually resulted in a slight increase
in the overall convergence speed at resonance compared with
that of the MFIE. This can be seen in Fig. 8, which shows
the convergence speeds of the MFIE- and CFIE-based single
integral equations for the two resonances just discussed.

V1. CONCLUSION

In this paper, a single integral equation formulation for elec-
tromagnetic scattering by 3-D homogeneous dielectric objects
is developed in which a single unknown effective current ap-
pears. Crucial to the formulation is the use of triangular-patch
basis functions to expand the equivalent currents generated
by the effective current. Numerical results for the scattering
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Fig. 8. Convergence speeds of the single integral equation formulations
based on the MFIE and CFIE for the resonant dielectric spheres of Fig. 7.
In the case of kja = 4.4934, the iteration was stopped at a normalized
residual error of 0.001 to save computation time.

of a plane wave by a dielectric sphere demonstrated the
validity of the formulation. The convergence speed of the
GMRES method for solving the matrix equation in the MFIE-
based single integral equation formulation was found to be
significantly greater than that of the coupled integral equations
formulation. The CFIE-based single integral equation with

= 0.1 was found to be effective in eliminating solution
error at resonance. The formulation discussed in this paper can
be generalized to the case of a homogeneous dielectric object
embedded in a layered medium, by representing the interior
fields in terms of a single effective current and employing the
appropriate Green’s functions for the layered exterior region.
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(ela hl) (81! u’l)

Fig. 9. Auxiliary problem for the single integral equation based on the MFIE
at a resonant frequency of an empty cavity bounded by the surface S. Mg
is the magnetic surface current density of the resonant mode, which acts as
an external current source here.

APPENDIX A

The integral operators Ei and H for the exterior region
are, for a time dependence of e/“*, given by

E3(J,M) = —jwA; — V®; — Eiv xF1  (39)
1
H:(J,M) = —jwF; — VI, + Miv xA;  (40)
1
where
Ai(r) = / J(x)Gi(r —1')dS’ (41)
S
Fi(r) =2 / M(()G1(r — ') dS’ (42)
N S
Oy(r) = 2~ | V. I@)Gi(x—1)dS  43)
wer Jg
Ui(r) = 2 | V/-M@)Gi(r—1')dS’  (44)

wpl Js

and G1(r — 1) is given by (33). The integral operators ks
and Hj for the interior region are obtained from the above
expressions by replacing the index 1 by 2 throughout.

APPENDIX B

In this Appendix, the MFIE, and EFIE for a dielectric object
are shown to be singular at the resonant frequencies of a cavity
bounded by the closed surface .S of the object but filled with
the material of the exterior region (u1,¢€1). First, consider the
MFIE (16) and let the frequency coincide with a resonant
frequency of the cavity. Then, there exists a magnetic current
M, on S which radiates a null field in the exterior region

3 '{(0, MO)I

=0 (45)
= 0. (46)

outside S

outside S

Now, consider an auxiliary problem in which the magnetic
current M acts as an external current source on the surface S
of a cavity filled with the dielectric of parameters (u2,€2) and
embedded in a medium of parameters (1, 1), as illustrated in
Fig. 9. This auxiliary problem obviously has a unique solution.
Let the tangential fields in this solution just inside S be
n x e, and n x hy. The corresponding tangential fields n x e;

ra

and n x hy just outside S are determined by the boundary
conditions

nxe =nxe;— M “n

nxh1=n><h2. (48)

By the equivalence principle, the magnetic field h; outside .S
can be written as

h1 = I:I:SL(H X h1, —-n X e1)|

== I:Ii(n X hl,—n X 62)1

outside S

(49)

outside S

where (47) and (46) have been used. By the jump condition,
when the integral operator on the RHS of (49) is evaluated
inside S, the result is zero

0=H;(n x hy, —n x ey)]

= I:Ii(n X hz, —n X eg)l

inside S
inside S (50)
where (48) has been used. It remains to show that the fields
e, and hy in the interior region can always be represented in
terms of a single effective electric current J0g; that is

n x ey = n x E3(J%, 0)| (51)

(52)

just inside S
n x hy =nx Hg (Jgff’ 0) ljust inside S
The integral operators on the RHS of the above equations are
the familiar EFIE and MFIE integral operators for electromag-
netic scattering by a perfectly conducting object embedded
in a medium of parameters (u2,e2). It is well-known that
the resonant frequencies of these operators in general do not
coincide. Hence, at least one of (51) and (52) is nonsingular at
any given frequency, which allows J O to be solved uniquely.
Substituting (51) and (52) into (50), one obtains

0=I:I§[nXI:I%(JSH’O),—HXEg(Jgﬁ,O)” (53)

inside S”
Equation (53) shows that the solution JJ; to the auxiliary
problem of Fig. 9 is a nontrivial solution in the null space
of the integral operator on the RHS of (16). This means that
the MFIE (16) is singular at the resonant frequency under
consideration. ‘

By duality, the EFIE (15) is singular at the same frequency.
In this case, however, the corresponding solution Jéﬁ in
the null space of the integral operator on the RHS of (15)
is the solution of a different auxiliary problem, where the
magnetic current Mg shown in Fig. 9 is replaced by an
electric current J; = +/eo/uoMj radiating a null field in
the exterior region. Obviously, Jig is different from Jog.
This suggests that, although the MFIE (16) and EFIE (15)
are individually singular at the same resonant frequency, a
linear combination of the MFIE and EFIE, namely CFIE =
[(1 - a)A] MFIE + av/€o/ o EFIE, where 0 < o < 1.0 and
A is the average side length of the triangular-patch model,
is nonsingular at all frequencies, since the null spaces of the
integral operators in (15) and (16) are disjoint.
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