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The lifetime of an excited atom near an absorbing dielectric surface is calculated from an exact solution of
a microscopic Hamiltonian model, which includes the effects of dispersion, local-field correction, and near-
field Coulomb interaction. Results for the total decay rate are shown to be in excellent agreement with those
based on classical electromagnetic theory and to yield the well-known result for the rate of nonradiative energy
transfer in the limit of very small distance from the surface. [S1050-2947(96)01811-2]

PACS number(s): 42.50.Ct, 42.50.Hz, 32.50.+d, 78.90.+t

I. INTRODUCTION

The lifetime of an excited molecule has been known for a
long time to be significantly affected by a partially reflecting
mirror in its vicinity [1]. Early attempts to explain the ex-
perimental results .using classical electromagnetic theory
[2,3] have been quite successful. Nevertheless, the validity of
these theoretical results has so far not been verified by cal-
culation based on a fully canonical quantum theory. Re-
cently, spontaneous emission by an excited atom near a loss-
less dielectric surface was analyzed from the viewpoint of
quantization of macroscopic spatial modes [4]. However,
such an approach cannot easily be extended to include the
effects of losses in the dielectric. Thus, up to now, an analy-
sis of the lifetime of an excited atom near an absorbing di-
electric surface based on a fully canonical quantum theory
has been lacking. In this paper, we present one such analysis
based on an exact solution of a microscopic Hamiltonian
model.

After discussing the Hamiltonian formulation in Sec. II,
we diagonalize the matter part of the Hamiltonian density to
obtain the dressed matter field in Sec. IIL In Sec. IV, the
self-energy of an excited atom near the dielectric surface is
obtained to second order of perturbation theory by consider-
ing the Green function of the excited atom to this order. The
decay rate of the excited atom, which is proportional to the
imaginary part of the atom self-energy, is then expressed in
terms of the instantaneous Coulomb interaction, the Green
function for the transverse photons, and the Green function
for the harmonic-oscillator field [Eq. (70)]. In Sec. V, the
latter two Green functions are obtained by solving the corre-
sponding Dyson equations exactly. This involves a three-step
procedure. First, the Green function for the harmonic-
oscillator field is solved exactly by ignoring the coupling to
the transverse photons [Eq. (90)]. Then, the Green function
for the transverse photons is solved exactly by including both
the bulk and the surface contributions to the photon self-
energy (Appendix). Finally, the Green function for the
harmonic-oscillator field is corrected by including the cou-
pling to the transverse photons [Eq. (122)]. Numerical results
for the decay rate of the excited atom obtained from the
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above theory are compared with those obtained from the
classical theory in Sec. VL

11. THE MICROSCOPIC HAMILTONIAN MODEL

Our microscopic model of the absorbing dielectric is the
Hopfield model with losses introduced by Huttner and Bar-
nett [5]. This model has been used in the study of spontane-
ous emission in an infinite absorbing dielectric medium [6].
Here we apply it instead to an absorbing dielectric occupying
the half space z<<0.

In the absence of the excited atom, the Hamiltonian den-
sity of the system consisting of the lossy dielectric half space
and the radiation field is

H=Hep+ Hona+ Hros+ Higg + iy Hig

int mnt’

(1)

The various parts of this Hamiltonian density are the follow-
ing.
@) H’:m is the Hamiltonian density of the free radiation
field

A € . 2 1 5
=— —(VX
Hin=y (A4 5 (VXA @)
where A is the vector potential.
(ii) Hppg is the Hamiltonian density of the bare dielectric

occupying the half space z<0, modeled by a harmonic-
oscillator field

—
Hoga= 0(—2)(2—15P§{+ﬂxz), 3)

2

where X is the bare matter field operator and Py is the mo-
mentum conjugate to X.

(iii) H,es is the Hamiltonian density of the reservoir asso-
ciated with the dielectric, modeled by a continuum of har-
monic oscillators

2

o [F | Lp2 4 P92
Hes= 6( z)f0 dw(zppﬁ,+ 5 Yw), )

where Y, is the reservoir field operator and P, is the mo-
mentum conjugate to Y,,.
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(iv) M is the coupling between the bare dielectric and
the reservoir leading to losses in the dielectric

HEZg(~2) fo wdw,@x.m,, ' ©)

where v(w) is a square-integrable function with the proper-
ties that the analytic continuation of v(w)? to negative fre-
quencies is an even function and v(w)#0 for all nonzero
frequencies.

(v) 'Hﬂ,, is the interaction between the bare dielectric and
the vector potential

2
HA=0(-2)| — ZA.Py+ S-p2 ©)
int p X 2P .

(vi) H3, is the interaction between the bare dielectric and
the scalar potential /

2
MU= —eUV-[Xﬁ(—z)]—%(VU)Z— ;Toxzo(—z), )

where the third term on the right-hand side (RHS) of Eq. (7)
is introduced to model the effects of local-field correction.

For simplicity, we have omitted the dependence of the
Quantities A, U, X, Py, Y,, and P,, in the above expres-
sions on (r,t). Also, the Heaviside unit function 0(—2z) in
the above expressions is used to indicate that the dielectric is
confined to the half space z<0.

In our quantization scheme, U is not treated as an inde-
pendent field. Instead, U is eliminated from the Hamiltonian
density by means of its Euler-Lagrange equation of motion,
In the Coulomb gauge V-A=0, which we shall use in this
paper. the solution for U is the instantaneous Coulomb po-
tential for the charge density —eV-[X0(-2)]:

—eV'~[X(r’,t)0(—z')]
dmeglr—r'|

U(r,z)=f d’r’ , 8

in which the same value of time ¢ appears on both sides of
the equation,

The Hamiltonian H of the system is obtained by integrat-
ing the Hamiltonian density H over all space. For the Cou-
lomb interaction M, we can eliminate U using Eq. (8). Af-
ter integration by parts, we obtain the contribution to H due
to the Hamiltonian density HY

mnt
| .
[ — ’ [ 1
Hiy(t)= E£<ofz'<od3r d’r X,-(r,t)Xj(r D F(r—r'),
O

where

_—

efe2l 1 2 1
4 ox;ox] [r—r’|

€

1
—'3'6,'1'6(['_[',)]. (10)

The fields are quantized in the usual way by imposing
equal-time commutation relations between the field operators
A, X, and Y, and their conjuga_;e momenta ‘

[A,.(r,t),A,.(r',;)]s,'e—oa,.ja(r—r'), a1
[Xdr.0). Py f(x' 1)] =ik 8,8(r~r"), (12).

[Yu,,,.(r,:),Pw,,,-(r',:)]=iﬁo‘,.,a(w—w')a(r—r').
(13);

IIL. DIAGONALIZATION OF THE MATTER PART

Ideally, one would like to diagonalize the Hamiltonian |
H by means of a canonical transformation from the field:
operators A, X, and Y, to some other set of -operators. This
proved to be too ambitious a task. Instead, we seek an exact :
solution of our Hamiltonian model using diagrammatic per-
turbation theory. ‘

We first diagonalize the Hamiltonian density of the sub- ]
system consisting of the bare matter field, the reservoir, and °
the coupling between the two,

M= Mipart Hogg+ HES. (14)
Our approach follows closely that of Huttner and Barnett [5].
Whereas these authors performed the diagonalization in re-
ciprocal space, as is appropriate for an infinite dielectric me-
dium, we perform the diagonalization in real space, since we
are dealing with a dielectric half space. The annihilation op-

erators b(r,#) and b(r,7) for the bare matter and reservoir
fields are defined in terms of X\Y,,. and their conjugate mo-

menta by
_ . [P@ Py
b= ‘R(X‘Fl—_._o), (15)
b —\/—pw( Y, oo 6
@ Vag| e pw/’ (16)

where, for simplicity, we have omitted the dependence of the
operators on (r,t). Equations (15) and (16) may be inverted,
using the fact that X,Y,,, and their conjugate momenta are

Hermitiag,

/ h

X= —(b"+b), (17
2p(170
ﬁp(B-o

Py=i —5— bt —b), (18)
. 4 bt

Y,=—i VZp—w( w ™ Dy, (19)
fpw "

P,= — (b, +b,). (20

Using Egs. (15), (16), (12), and (13) we readily obtain
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[bi(r,0),b}(r' )] =8, 8(r—r"), (21

[bui(r,0),b%, (r',0]=8,8(0—0')8(r—r'), (22)
while all other comumnutators between b,b,, and their Hermit-
ian adjoints vanish. Substituting Egs. (17)—(20) into Eq. (14)
and using Egs. (3)-(5), we obtain

HO = 9(—1)[ ﬁaTobT-b+f do fiwbl-b,
0

h £
+5J- dw V(w)(bf+b)-(bz,+b,‘,) ,  (23)
0

where V(w)=[v(w)/p]Vw/@, and we have omitted an in-
finite zero-point energy term.

Next, we diagonalize the Hamiltonian density Eq. (23) by
defining the annihilation operator B (r,t) for the dressed
matter field

B, = ap(w)b+ By(w)b'

+ f:dw’[al(w,w’)bw'+Bx(w,w')bf,,,], (24)

the dependence of the operators on (r,) being understood.
The coefficients ag(w), By(w), a(w,0'), and B (w,o’)
are to be chosen so that Hf,?:, is diagonalized,

HO (r,1)=6(~2) f " dew AwBl(r.1)-By(r.1), (25)
0

and furthermore that the transformation Eq. (24) is canoni-
cal,

[Bo.i(r.t),BL, (r'.0)]=6,8w-w')s(r—r'). (26)

As shown by Huttner and Barnett [5], the conditions (25)
and (26) determine the coefficients up to a phase to be

= ) 27
ag(w) 2 wz—a')'(z,z(w) (27)
W= @ V(w)
= ) 28
Bo(w) ( 3 )wz-—a’fgz(w) (28)
" @ V(e') V(w)
Bl(wvw )-'2_ (l)+(l), wz—'l?fgz(m)' (29)
, .. @ V(e') V(w)
(0= 8= 0) 4| o S
(30)
where z(w) is defined by
1 (= , Vi(w")
z(w)=1——— dw m (31)

50 -x
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Furthermore, if the set of dressed operators B, and
B!, 0<w<, is assumed to be complete, Eq. (24) can be
inverted to give b and b,, as functions of the dressed opera-
tors ;

b= f:dw’[aa‘ (@)B,~ Bo(w)BL], (32)

b,= fomdw'[af(w',w)Bw'—Bl(""»"’)BL']- (33)

Substituting Eq. (32) into Eqgs. (17) and (18), we can express
the bare matter field operator and its conjugate momentum in
terms of the dressed operators

X= \/ h f °°dc.,[h(m)ls,t,+H.c.], (34)
2p6)'0 0

P,=/ "’;"7" f “dwlg(w)Bl+Hel, (35)
0

where
h(w)=ag(w)— Bo(w), (36)

g(w)=i[ag(w)+ Bo(w)], &)

and H.c. denotes the Hermitian conjugate of the immediately
preceding term.

IV. SPONTANEOUS DECAY RATE

Up to now, we have only considered the system consist-
ing of the lossy dielectric half space and the. radiation field
with which it interacts, as described by the Hamiltonian den-
sity ‘H defined by Eqs. (1)-(7). When an excited atom is
introduced into the system, there is an additional interaction
Hamiltonian of the form

H,,=f Br(—j,-A+p,U), (38)

where j, and p, are the current and charge densities of the
atom. For simplicity, we assume the atom to be made up of
a single electron of mass m and charge e in orbit around a
fixed nucleus of charge —e at a point r, on the air side of
the dielectric surface z,>0. Then the current and charge
densities of the atom are given by

ihe
Ju(r.t)=— m{t//*(r,t)v P(r,) = [Vl (r,0) (1)}
e? ‘
- -2—m—A(r,t)t/J (r,t)Y(r,1), (39)
p,,(r,t)=edlf(r,t)(//(r,t)—ea(r—ra), (40)

where ¢(r,t) is the field operator of the electron. For a two-
level atom, ¢(r,t) may be expanded in annihilation opera-
tors co(t) and ¢ (¢) for the ground and excited states, respec-
tively,
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0= o) + 1 (1 (), (41)

where uy(r) and uy(r) are the ground- and excited-state
wave ﬁmcti‘gp‘s‘ of the atom, reépec‘tively, which are assumed
to have opposite parities. The'annihilation operators cq(¢)
and c¢,(r) obey the equal-time anticommutation relation

The integral over r in Eq. (38) can be performed if we
make the dipole approximation for the atom. This means that
the atomic wave functions uo(r) and u,(r) are assumed to
be localized to within a smali neighborhood of the nucleus at
r,. In that case, the vector potential appearing in Egs. (38)
and (39) may be replaced by its value at r,, . Using Egs. (39)
and (41), the first term in Eq. (38), responsible for the radia-
tive decay of the excited atom, can be evaluated;

H;(tjif—f d3rja-A
€t
=~ mlco(®)ei(nA(r, 1) py,

2
DDA 1) pro] + 5o AX(x, 1)
X[eg(t)eo(t) +cl(t)e (0], (43)

where Poi=pfy is the matrix element of the operator
(—iAV) between the ground- and excited-state wave func-
tions.

For the second term in Eq. (38), we first expand the in-
stantaneous Coulomb potential U(r,r) given by Eq. (8)
about r,,

—eV'-[X(r’,t)G(-z')]
41760

U(r,t)=f d3r’

1 1
x[lra_rll +(Xj_xaj)axaj ll‘a*l"l ’ (44)

Using Egs. (44), (40), and (41), the second term in Eq. (38),
responsible for the nonradiative decay of the excited atom,
can be evaluated,

def
H™(t)= Ld%pau

"ez[cg(’)cl(f)l’ou_ CI(I)CO(’)PIOJ]
= dTegme,

2 1

J
X &rix(r' 0 (45
L,<O r ‘,(r )axajax,. lra-rl (45)

where we have performed an integration by parts and w, is
the atomic transition frequency.

The radiative and nonradiative perturbation Hamiltonians,
Egs. (43) and (45), may now be used to compute the total
decay rate of the excited atom in first-order perturbation
theory. This may be accomplished by applying Fermi’s
golden rule and then expressing the resulting decay rate in
terms of Green functions by means of the fluctuation-

M. S. YEUNG AND T. K. GUSTAFSON

Perturbation technique. Since we ‘are interested in the self-
energy of the excited state, we consider the Green function
for the excited-state operators

8=~ T ), )

where the superscript (a) denotes - exact quantities in the
combined system of the half space dielectric and the excited
atom. Also, the angular brackets denote averaging over the 3
exact ground state of this combined system and T denotes
time ordering. Since () in Eq. (46) is an exact operator
for the combined system in the Heisenberg picture, its time .
dependence is in general unknown. Hence Eq. (46) must be
evaluated by diagrammatic perturbation technique. The gen-
eral result of the diagrammatic technique [7,8] is

g(tl _t2)= - é(T[Cl(’l)S(wv_m)c'lr(IZ)])cohn’ (47)

where quantities without the superscript (a) are unperturbed
quantities, that is, those associated with the Hamiltonian den-
sity H of Eq. (1) without the perturbation H,. Also,
S(%,—c¢) is an infinite series of operators

* 1/—-i\" re ©
S(oo,—oo)=l+z —(Tl) f f dtl'"dl,,

n=1 n!
X T[Ha(tl)' * 'Ha(tn)] (48)

and the symbol “‘conn’’ in Eq. (47) indicates that only con-
nected diagrams are to be included in the calculation.

Since co(t) and ¢,(¢) in Eq. (47) are unperturbed opera-
tors, their time dependence is simple harmonic,

co(t)=cge 0!, (49)
Cl(t)=Cle_iwl,, (50)

where w, and @, are the energies of the ground and excited
states of the atom, respectively, divided by A. Thus the

zeroth-order  Green  function obtained by setting
§(=,—=)=1 in Eq. (47) is
§Ow) = 1)
ho—fiw +ie

where we have taken the Fourier transform with respect to
(11~ 1,).

Next, we compute the first-order correction to the Green
function
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A2 o
8“)(‘1 —t))= ( - %) f_deB(T[cl(tl)Ha(t3)CI(t2)])conn
| (52)

by substituting the n=1 term in Eq. (48) into Eq. (47). In
order to have a nonvanishing expectation value, there must
be the same number of annihilation and creation operators
for the ground or excited state in the time-ordered product in
Eq. (52). Upon examination of Eqgs. (43) and (45), we find
that the only term in H,(z;) that contributes to the expecta-
tion value in Eq. (52) is the term proportional to A? in Eg.
(43). Substituting this term in Eq. (43) into Eq. (52), expand-
ing the time-ordered product using Wick’s theorem and tak-
ing the Fourier transform with respect to (¢, —t,), we obtain

gM(w)= — Lo : —  (53)
fo—fho,+ie” fo—tho+ie
where
ihe?
PR ”=WD,~,-(r,, ,T,30) (54)

is the self-energy of the excited atom in first-order perturba-
tion theory and

def i

Dij(rl B y) ;tl _[2)= - g(T[Ai(rl ,tl)Aj(rz,tz)]) (55)

is the transverse photon Green function for the dielectric half
space. It should be noted that =) given by Eq. (54) is
purely real. Substituting Eq. (55) into Eq. (54), we obtain

2
(= Ze—m(Az(raJs))’ 6

which is purely real since A is Hermitian. Thus 3¢ contrib-
utes only to a level-shift of the excited state, but not to its
lifetime. Hence, for the purpose of computing the lifetime of
the excited atom, we may neglect (1),

Next, we consider the second-order contribution to the
atom Green function obtained by substituting the n=2 term

in Eq. (48) into Eq. (47),

@) l , 3 x x
g (t,—t2)=i Y _xd’.'i _xdt4

X(TTei(t)H (13)H (15)¢ (1) Deonn -
(57)

When Egs. (38), (43), and (45) are substituted into Eq. (57)
and the product of the two Hamiltonians expanded, we find
that there are terms proportional to €2, ¢, and e*. It will be
seen below that one of the factors of ¢ in H} given by Eq.
(45) is absorbed in the definition of the dielectric function
[cf. Eq. (83)], which is of order unity. Hence H™ should be
counted as a term of order e rather than e2. Now, since we
are only interested in the decay rate of the excited atom to
the same approximation as in Fermi’s golden rule, we retain
only the terms proportional to e? in Eq. (57). This amounts
to omitting the A? term in Eq. (43). Thus we are left with

four terms contributing to the self-energy of the excited atom
to order e2: one due to H’, acting twice, one to HY acting
twice, and the two cross terms. We consider each of these
cases separately. ‘

Consider first the effect of H; acting twice. Substituting
the first term in Eq. (43) into Eq. (57), expanding the time-
ordered product using Wick’s theorem and taking the Fourier
transform with respect to (¢, —¢,), we obtain

gﬁ?(w)=m2ﬂ(w)ﬁ

ho—faric O9

where

@y |8 2 * i(w=wg)r
Saa(w)= m) Proibo | dr Dij(r,,r,57)e 0
(59)

is the contribution to the self-energy of the excited atom to
order e? due to H", acting twice.

Next, we consider the contribution to the self-energy of
the excited atom due to H} acting twice. Substituting Eq.
(45) into Eq. (57), expanding the time-ordered product using
Wick’s theorem and taking the Fourier transform with re-
spect to (¢, —1,), we obtain

(2) (2)

sudle) = g Fie (W

w—fho +i€ (60)

where
1 \2
2 w)= E) PlOJPOl.nJ-Z,<Od3r’J;,,<0d3r"
Xf:d'r T (r,— 1) Gy(r' ¥;7)
X F (' =1,) (61)
and

' def
Gij(ry.r2it =)=~ ';:(T[Xi(rl )X j(r,15)]) (62)

is the Green function for the matter field X. In deriving Eq.
(61), we have used the fact that &(r,—r') and &(r"-r,)
occurring in F;(r,—r’') and F,(r"—r,), respectively, in
this equation are zero for z,>0 and z',z"<0.

Finally, we consider the contribution to the self-energy of
the excited atom due to H, and H) each acting once.
Whether we take H ,(¢3) in Eq. (57) to be H], and H,(13) to
be H or vice versa, we get the same result. Hence we need
to consider only one of these two cases and multiply the
result by 2. The final result is

(2) = _5{2) -
gau(@) ho—to, +iez‘”(w)ﬁw—ﬁw1 +ie ©€3)

SMBRED 2000 S
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where

e % .
v~ Car ][
m ﬁw“ 0 Jz'<0 Z"<0

XEp(t, = Wprapon ATTA(ra DX (' 0)))
~PoLiP10/TTA(r,0)X/(r', 7)])}. (64)

The spontaneous decay rate of the excited atom is propor-
tional to the imaginary part of its self-energy in the excited
state

3(w)

Wepon= =2 Im —— ; (65)

W=

Wspom'j 61rc3eo
() i
spont W,
+ ! f &r Fljim(ta=1")Co (X' ¥ i7)
ew, ) <o Liim T m(ji{F s a3
where

def

1
Cij(ry,ry;m)= E(T[Xi(rl DA [(r2,0)~X,(r),0)A (r,,7)]).

M. S. YEUNG AND T. K. GUSTAFSON

w=w

where the self-energy 3.(w) of the atom in the excited s
is given to order ¢? by E

2(@)=2(0)+2Z)+ 2 w0) + 2@ (w).

We now assume that the transition d_ipolé* moment o
atom is parallel to one of the coordinate axes, say, the j a
Its decay rate in free space is given by - o

WO __ Y e\?

w3 og eI m) ProsiPorij) s (67
Wwhere the square brackets around the index J mean that this
index is not summed. Then, normalizing the-decay rate Eqg;
(65) to this free-space value and using Egs. (59), (61), and
(64), we obtain

= 1
iw . )+ 3 3.7 . - ’. i " _
Imf0 dre '{Dmm(ra,r,,,r) e_”w,fz<o,”z'<od rd’r'Fij,(r,—r) G (r,r ,T)an(r r,)

, (68)

a

(69)

The integration over 7 in Eq. (68) can be performed explicitly by making use of the analytic properties of the Green functions -3

[7]. The result is

3
Wspom. j_ 67c’e
= —
spont

+

ew,

where the superscript w denotes Fourier transform with re-
spect to T.

Equation (70) shows that the spontaneous decay rate of
the excited atom near the dielectric surface is, to the same
order of approximation as in Fermi’s golden rule, given in
terms of the Fourier transforms with respect to (¢, —1t,) of
the photon Green function Eq. (55), the matter Green func-
tion Eq. (62), and the function Cij(ry,r35t;~1,) defined by
Eq. (69). The latter three functions are defined with respect
to the Hamiltonian density M for the dielectric half space
defined by Egs. (1)~(7), without the perturbation H, due to
the excited atom. In contrast to the atom Green function Eq.
(46), the functions 'D,-“j’- . g,f';., and C,“J’ cannot be approximated
by the first few terms of their perturbation expansions, since
the cumulative effect of the electrons in the dielectric can be
large. Instead, these functions are obtained as exact solutions
of the Dyson equations that they satisfy. This is discussed in
the next section.

1
f, dsr,F[j]m(ra_r,)cp(::[j](r"ra)}
7' <0

1
Im[DE,’-]U](ra,ra)"' m£<0£,<od3r d3r'me(r,,—r) an(r,r’)F,,U](r'—ra)

. (70)

l.l)—ll)a

V. GREEN FUNCTIONS FOR THE HALF SPACE

The Hathiltonian density H for the dielectric half space
can be rewritten according to Eqgs. (1) and (14) as

H=HA + HO+HY+HA (71)

To obtain the exact Green functions for this Hamiltonian
density, we first separate the latter into an unperturbed part

Ho=Hf+ HO+HY (72)

and a perturbation M, . First, we consider the photon Green
function in the subsystem described by the Hamiltonian den-
sity of Eq. (72),

3

[ L et b ipnen
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i .
DTy asty = 12)= = (TTA L (r1,1)A L (15,1) ),
(73)

where the superscript (0) denotes quantities associated with
the Hamiltonian density Hy. From Eqgs. (2), (23), (7), and (8)
we see that, in the subsystem described by H,, the transverse
radiation field A is completely decoupled from the matter
field X and the instantaneous Coulomb potential U. Hence,
in this subsystem, A® is just the free-space radiation field,
which can be expanded in a complete set of transverse plane
waves,

© d*k %
AT(r1)= 2m N 26w,

X 22{dx(k)ex(k)e"“—w'uH.c.], (74)
A=1,

where w,=|k|c and e,(k), A=1,2, are unit vectors such
that [e,(k),e;(k),k/|k|] form an orthonormal right-handed
triad. The commutation relation Eq. (11) implies that
[ax(K),a},(K')]= 8y \/8(k~K'), (75)
while the commutator between a,(k) and a,.(k’), or be-
tween a{( k) and a{,( k'), vanishes. Equation (75) shows that
a;(k) and a, (k) are the creation and annihilation operators
of a transverse photon of wave vector k and polarization \.
The free-space photon Green function can be calculated
by substituting Eq. (74) into Eq. (73). After taking the Fou-
rier transform with respect to (¢, —¢,), we obtain

5 kik;
1 ( d’k T kT

_ ik-(ry—ry)
&) 27)° w—kci+ie '

DE?)W(I'I ,r2)= e (76)

Next, we consider the Green function for the matter field
X for the unperturbed Hamiltonian density of Eq. (72). To do
S0, it is necessary to partition H, further into a part without
the Coulomb interaction
Hoo=Hem+ Hoga (77
and the Coulomb interaction term Hy,. We first obtain the
Green function for X in the subsystem described by Hy,,

i
gg')())(rl 9r2;t] _t2)= - E(T‘[Xfm)(rl 9tl)X§'OO)(r2 7t2)])(00)’
(78)

where the superscript (00) denotes quantities associated with
the Hamiltonian density of Eq. (77). For this purpose, the
first term in Eq. (77) has no effect, since there is no coupling
between the radiation field and matter in this subsystem.
Next, since the term 'Hf,?a)( given by Eq. (25) is diagonal in the
dressed matter operators B, the time dependence of the
latter operators in this subsystem is simple harmonic. Substi-
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tuting Eq. (34) into Eq. (78), using the commutation relation

Eq. (26) and taking the Fourier transform with respect to
(1, ~1,), we obtain

. i o
GO 17)= = —— 8,805,y [ e (a2
2p@, 0

i i
x[w—w'+i€_w+w'—i€]' (79)
Using Eqgs. (36), (27), and (28), we obtain
(o) P==2Ew"), (80)
where
def ~ IVz '
fa')= —e V(@) (81)

"wrz_agz(w:)lz'

Equation (81) shows that £(w) is an even function of w,
since VXw) is odd and z(—@)=z*(w). Furthermore,
£(w) is analytic on the real w axis [5].

The integral over @’ in Eq. (79) can be rewritten as

def re 5 1
_ ' ' _
I(w) f do’lh(a")] w—w' tie w+w'—iel

0
2w’

T de
- Jotor S

3o (= 1 1
=%fo dw'g(w')[ + ]

w—w' tie wto' —ie

(82)

Following Huttner and Barnett [5], we define the dielectric
function of the dielectric as

e? J * d
2p€0 ) - @
This function satisfies the Kramers-Kronig relations, since
Eq. (83) shows that €(w) is analytic in the upper half of the
complex plane. -Comparing the RHS of Eqs. (82) and (83)

and using the fact that £(w) is an even function of w, we find
that

, &)

w—w' +ie

e(w)=1- (83)

2peodfo

Jw)== 52 el - 1], 84)
Substituting Eq. (84) into Eq. (79), we obtain
-1
GOu (e rp) =~ EBEE(‘L:;R—] 0;8(r1—ry). (85)

When the Coulomb interaction Eq. (9) is added, the mat-
ter Green function GS-” can be expressed in terms of quanti-
ties without the Coulomb interaction using the general result
of the diagrammatic technique,
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i
g.‘,‘-”(n Mot — )=~ {(T[X,(m)(rl 11)8Y (o, —x)

X Xf-oo)(l'z )N, (86)
where
SY(o0,~0) = 14 5 i'(:-)nfm fx dt,---di,
amin!\ & —» —=
XTIHR (1)) - -HEPV(1,)]. (87)

Substituting Eq. (87) into Eq. (86), expanding the time-
ordered products using Wick’s theorem and taking the Fou-
rier transform with respect to (t;—1;), we obtain an infinite
series that can be summed in closed form

0
gﬁj )m(l'l \r2)
=g§}m“’(rl ,r2)+f d3r'f d3r"
2'<0 2"<0

xgl('?O)w(rl ’r')FIm(r, _l"’)gs,.o,p)w(r”.rz)"' Tty

=gg~)o)"'(rl,r2)+f d3r'f d3r"
'<0 Z"<0

XGOry B ) Fim(r ~ )G, ry).  (88)
Then, substituting Eq. (85) into Eq. (88), we obtain

-1
gﬁ”’”(r. JFp)=— L‘E(I:;I)_—][‘("ijﬁ(l'l —-r)

+f d*r3F (1~ 1) g(,,?,-)"'(l'3,l‘z)J-
23<0

(89)

Equation (89) is the Dyson equation for the matter Green
function g};”“‘ for the system described by the Hamiltonian
density H, of Eq. (72). This equation can be solved exactly
for gg?"" using an extension of the Wiener-Hopf technique.

The solution is [9]

0 =
ggj (e, rp)=—

-1
i.[eL_(le“;l)_l 5,-,’6(“ —l‘z)

+eo[eL(lwl)—1]ZI F ( ! )

dme(Jo))e? 0x1;0x5; \ [r) =1y

eflo))-1 & 1 ) (90)
e(lw))+1 oxy;0xy; AR
where T, is the image of r, in the plane z=0 and
&(|lw]) -1

Sl — .
D=1+ o

is the dielectric function including local-field effects.

So far, we have obtained the Green functions for photons
and matter, Eqgs. (76) and (90), for the system described by
the Hamiltonian density H, of Eq. (72). Next, we calculate
the Green functions for the complete Hamiltonian density
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Dij(l'l,l'z;tl_tz)y?"E(TTA,(O)(I‘htl)S“(?O:,—w)V

XA )N . 02

where

o (=i [ =
SA(oo,—Oo)=l+"=l F(T) f_w”'f_mdt"”dt" :
XTTHOA@)- - HOA()]. ©3) §

Here Hg,(,),M(t) is the Hamiltonian corresponding to the
Hamiltonian density H{,(r,r) of Eq. (6),

€
Ha(0)= f d3r[ = A PP(r.e)
2<0 p

) .
+ Ze—pA(o)(r,t)~A(°)(r,t)J. (94)

As we have mentioned, D;; cannot be approximated by the
first few terms of its perturbation expansion. Instead, the en-
tire infinite series in Eq. (93) must be substituted into Eq.
(92). However, we shall see shortly that the resulting infinite
series can be summed exactly to give a closed-form Dyson
equation for the photon Green function.

The zeroth-order term in Eq. (93) gives just the free-space
photon Green function DS-” of Eq. (73), whose Fourier trans-
form is given by Eq. (76). The n=1 term in Eq. (93) gives a
first-order correction to the free-space photon Green func-
tion. Since there must be an even number of A operators in
the time-ordered product to give a nonvanishing expectation
value, we see that only the second term in Eq. (94) contrib-
utes in this order. Thus we obtain

o2
Di“(ry,r;)= —f ’rsD(r, E3)DN(ry ,1y),
P 73<0
(95)

where we have taken the Fourier transform with respect to
(1, ~13).
Next, we consider the contribution from the n=2 term in

Eq. (93),

(2) L(=i) (e B
Di; (l‘r,rz;tl“z)=ﬁ R _ A
X(TTA{O(r, 1)
X HEA ) HQA(1) A (r1) )0, .
(96)

When Eq. (94) is substituted into Eq. (96) and the product of
the two Hamiltonians expanded, there is a total of four terms:
one due to the first term in Eq. (94) acting twice, one to the
second term in Eq. (94) acting twice, and the two cross
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terms. The latter cross terms contribute nothing, since they
each contain an odd number of A operators.

Consider first the contribution due to the first term in Eq.
(94) acting twice. Substituting the first term in Eq. (94) into
Eq. (96), expanding the time-ordered products using Wick’s
theorem and-taking the Fourier transform with respect to
(t;— 1), we obtain

2 —e)?
()”(rl,l'z) (7) f <0d3r3f <0d3r4
13 24

XD (ry,13) Qi (x5, 100) D)“(rq ,1y),
©7)

where Q{2 is the Fourier transform of the quantity oY
defined by

def
A(ry ., ryity—ty)=— —(7{1"°’<n 1) PN, 12)])).

(98)

The quantity Qg-” is the Green function for the operator
Py in the subsystem described by H, of Eq. (72). To com-
pute this quantity, we follow the same procedure as used in
computmg gfj’ by partitioning H, into a sum of Hgy, and
H.m where Hyg is given by Eq. (77). The Green function for
Py in the system described by Hyy, is given by an expression
similar to Eq. (78), but with X replaced by Py. Comparing
Eqgs. (34) and (35), we see that Py is obtained from X by
replacing h(w) by p@pg(w). Hence, following the steps
leading from Eq. (78) to Eq. (79), we obtain for Q(oo)“’
result similar to Eq. (79) but with A(w) replaced by
p&og(w),

(0] ipaj‘ * ’ !
QU (r1.12) == £ 6,6t~ [ “dwlg(w)?
i i 99
o—w'tie wtow —iel (99)
Using Egs. (37), (27), and (28), we obtain
lg(w’ )Iz———f(w’), (100)
@

where £(w') is given by Eq. (81). Following the steps lead-
ing from Eq. (79) to Eq. (85), we obtain

2
Q?}"’""(m»=—pa,-,a(rl—rz){1+—2—"€e"“’ [e(|w|)-—l]},
(101)

where we have used the fact that {5]
f do'&w')=1. (102)
0

When the Coulomb interaction Eq. (9) is added, the Green
function for Py is given by an infinite series similar to Eq.
(86)7

of ’(r.,rz,t.—rz)———mp D(ry,11)8Y(w, — )

X P (rz,1) N, (103)

where SY(c,—) is given by Eq. (87). When the latter
equation is substituted into Eq. (103) and the resulting time-
ordered products expanded using Wick’s theorem, we obtain
an infinite series

—i\2
Qf, (ry.rpst =)= Qf, (l'lyl'z,tl"tz)"'( ﬁ) j_mdts

% L,<Od3r’ £~<od3r”<7‘[1’§2?)("1 1)
XX 1) YOO (r' — 1)

X (T[X£"00)(r”,t3)PfY(f?)(rz,tz)])(w)
+oeen, (104)

We now have to compute the quantities
(TLPPX1) and (T[X{®PP1) . Using Egs. (34)
and (35) and following the steps leadmg from Eq. (78) to Eq.
(79), we obtain

i
= (TP )X ey, 1)) )

! = [8*(@)h()
=380 [ do [7.,:;,7—
g(w)h*(w")
““m] (103

where the vertical bar with the superscript w indicates Fou-
rier transform with respect to (¢, —1,). Using Egs. (36) and
(37), we calculate

g*(0")h(e")=—if|ag(w")|*~|Bo(w)]?
+2i Imlag(w") By (@)1} (106)

From Egs. (27) and (28), we see that [ag(w’) B (w')] is
purely real. Hence using Egs. (27), (28), and (81), we obtain

“gXw)h(w')=—ié(w'). (107)
Substituting Eq. (107) into Eq. (105), we obtain

- __<T[p(0°)(rl ,tl)x(oo)(l'z,tz)])(m)lw

= —ipwgg'x»w(rl,rz)’ (108)

where we have used Eqs. (82), (84), and (85).

For (T[X{*"P{?1)‘®, we obtain an expression similar to
Eq. (105) but with g(w') and h(w') interchanged. Accord-
ing to Eq. (107), this amounts to an extra minus sign. Hence

‘;L’.‘(T[Xgoo)(rlJl)P(oo)(l'z,12)])(00)|w_lpwgf,00) (ry.rp).
' (109)
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We now take the Fourier transform of Eq. (104) with
respect to (¢, —t,) and thgn,_use Egs. (108) and (109),

oD (r, )= Q§f°’“(rl ;l‘éjb"lzbz‘wz dr' f d*r"
) N 1 2"<0
X G, ) Fin(r’ — ) G0%(r" 1)
+eeel (110)

Comparing Egs. (88) and (1 10), we see that the infinite series
in these two equations, from the second term on the RHS of
each of the two equations onward, are identical except for a
factor p2w?. Hence we conclude that

Q,(}))w(l‘l T2)— Q,‘,‘-’”“’(n \r2)
=p2w2[6§}?"_"(r; Wra)— g,(-,(')o)w(l'l r2)]. (111)
Substituting Eqgs. (85) and (101) into Eq. (111), we obtain

Qg;))w(rl vr2) = “P¢9u5(l‘l - rz) +p2w2g§?)w(r, ,l'2)(, )
. 112

where G is given by Eq. (90). Equation (1 12) can now be
used in Eq. (97) to calculate ‘Dg"".

We still have to consider the contribution from the second
term in Eq. (94) acting twice, as well as the contributions of
the higher-order terms in Eq. (93). These contributions can
be taken into account by using diagrammatic analysis.

The perturbation series Eq. (92) can be represented by an
infinite series of diagrams as shown in Fig. 1. Here the com-
plete photon Green function is represented by a heavy
dashed line and the free-space photon Green function by a
light dashed line. The contribution Eq. (95) due to the second
term in Eq. (94) acting once is represented by the second
diagram on the RHS of Fig. 1(a), the contribution Eq. (97)
due the the first term in Eq. (94) acting twice by the third
diagram, the contribution due to the second term in Eq. (94)
acting twice by the fourth diagram, etc. It can be seen that
any one of the higher-order diagrams in Fig. 1(a) is con-
structed from just two types of building blocks, or self-
energy parts, represented by a cross and a vertical dumbell,
which correspond to the second term in Eq. (94) acting once
and the first term in Eq. (94) acting twice, respectively. We
can separate the higher-order diagrams into two groups:
those containing a self-energy part of the first type at the
bottom and those containing a self-energy part of the second
type at the bottom, as shown in Fig. 1(b). The infinite series
connected to either one of these factors consists of all pos-
sible diagrams constructed from an arbitrary number of self-
energy parts of either type strung together in any order by
free-space photon Green functions. Such a series is just the
complete photon Green function. Hence we obtain the
equivalent representation shown in Fig. 1(c). This means that
the higher-order diagrams are all included in just two dia-
grams obtained from the second and third diagrams on the
RHS of Fig. 1(a) by replacing the light dashed lines at the
top of the latter diagrams by heavy dashed lines. Mathemati-
cally, the complete photon Green function is given by the
sum of the free-space photon Green function and the two
terms derived from Egs. (95) and (97) by replacing the factor
Df,?j)"' in these equations by D?,

mj3
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FIG. 1. Perturbation series for the photon Green function. A ¥
heavy dashed line represents the complete photon Green function.
A light dashed line represents the free-space photon Green function,
A cross represents an interaction vertex due to the A- A term in Eq.
(94) acting once. A vertical dumbell consists of two interaction £
vertices due to the A-Py term in Eq. (94) acting twice. '

2
e
_ [+]
Dij(r1,r)=DP“(ri 1)+ —|  dr,
z3<0

XD)(r ~r3)D;,(r3,13)

—e\?
+(—) f d37'3f d3r4
P z3<0 z4<0

XDy = 13) Q0 (r3 1) D2 (14, 1)

(113)
Substituting Eq. (112) into Eq. (113), we obtain
D,‘fjf(rl,rz)=D,(]‘.’)“‘(rl_r2)+eza,2f d373f &’r,
o 23<0 Z4<0

x Dglmw(rl -r3)gfg)"’(r3 vl'4)D:j(l'4’r2)-
(114)

We may now substitute Eq. (90) into Eq. (114). For the
second term in Eq. (90), we perform integration by parts
twice and make use of the transversality of the photon Green
function,

3 ) '
32 Dirr) = E;D,.j(r,r )=0. (115)

The result is
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Di(r;,r) =D (ry~ 1)) — wleg e,(|w]) — 1]

X f d*ryDi)(r; = ;) D (r3,1,)
13<0

wlele (o)) =172
T Tt e+ 1] f f dssd’s

1
XD (r=ss) et Di(sam) + (116)

where s; and s, are integration points on the plane z=0.

Equation (116) is the Dyson equation for the transverse
photon Green function for the complete Hamiltonian density
H of Eq. (1). This equation can be solved exactly for Dj;
using an extension of the Wiener-Hopf technique, as dis-
cussed in the Appendix.

Next, we calculate the matter Green function g,“; for the
complete Hamiltonian density H. This is given according to
the diagrammatic technique by

Gij(ry.rysty =)=~ -;:(T[Xf-o)(r, )84 (20, — )
XX\ (ry,12) 1) o0 (117)

where §4(=, — =) is given by Eq. (93). Substituting the latter
equation into Eq. (117), expanding the time-ordered products
using Wick’s theorem, and taking the Fourier transform with
respect to (7, —1;), we obtain

5
-4

S

Xf dPr(T[X () 1)
23<0

0
X PUry 1) D) O] “Dp(r3.14)

X(TL P (e 1) X (r2,1) ) V0. (118)

We now have to compute the quantities (7] Pi1X{”])® and
(TIXOPP))®. These are obtained in terms of the quanti-
ties (TTPYIX*1)® and (TXP PPV by the dia-
grammatic technique with the Coulomb interaction H (00U a5

perturbation,
i
= (TPt X 0 (0, 12) D

i
== H(TLPRP(r1.1)SY (=, =) X2 (r2,12) Dcomn
(119)

where SYU(x,—=x) is given by Eq. (87). Comparing the
two infinite series Eqs. (86) and (119), we see that each
term of the latter series differs from the corresponding
term of the former series only in replacing, in the
former series, a factor (—i/A)(T[ X%V x{%07)100= (00 by

(=it T[PLOX 1) By Eq. (108), this amounts to
multiplying each term of the series in Eq. (88) by —ipw.
Thus we conclude

i
— (TP )X (2. )V = — ipwG)*(r, 1)
(120)
Similarly, using Eq. (109),

i
= (IO 1) PR, ) DO =ip G (ry 1y).
(121)
Substituting Eqs. (120) and (121) into Eq. (118), we obtain

—_ o
Gii(r1. 1) =GP(ry. 1)
+820)2-f d3r3f d3r4g§?)w(rl,r3)
23<0 74<0

X D (r3,14) G0 “(r3.17). (122)

Equation (122) is an explicit expression for the complete
matter Green function G} since gﬁ.”"’ is known from Eq.
(90) and the complete photon Green function ’D;‘} is known
from the Appendix.

Finally, we calculate the function C;; given by Eq. (69).
We consider each of the two terms in the latter equation
separately. By the diagrammatic technique, we have

1 1 (0) A
E(T[Xi(rl ,T)Aj(erO)D: g(T[Xi. (ry,7)8%(%,— )

X A0 (00, (123)

where $4(x,—x) is given by Eq. (93). Following the steps
leading from Eq. (117) to Eq. (122), we obtain

1

E(T[Xi(rl TA;(r,00 )]

0
=ewf <0d3r3g§1 )w(r[ ,1‘3)'D7)j(l'3 7r2)'
<3

(124)
Similarly, we obtain
1
'E(T[Xi(l‘l,o)Aj(rz,T)mw
l -
=5(T[Xi(l'1 T)A(r2,0)])
=—ew f dryGd " (r, 1) D s,y (125)
z3<0

It can be seen from Eq. (90) and the Appendix that the Green
functions gﬁj”“ and ’Df-’; are even functions of w, since @
enters into these Green functions only in the form |w| or
w?. Hence the RHS of Eq. (125) is equal and opposite to the
RHS of Eq. (124). Taking the Fourier transform of Eq. (69)
with respect to 7 and using Egs. (124) and (125), we obtain
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- . Horl;oiit'alj»," dipole

Normalized lifetime
-t

Vertical dipole

e
0 5 10
koza

FIG. 2. Lifetinie of an excited atom near a gold mirror. Solid
lines are the resuits of classical electromagnetic theory. Dots are the
results of our quantum theory. ko is the wave vector in air. z, is the
distance of the atom above the mirror.

C;'J’-(r, ,r2)=2ewf

23

<od3r3g§?)"’(r| ,l'3)D;‘;-(r3 ,rz). (126)

We now have all the quantities we need, namely, Dj;, Gi;,
and Cj} to compute the spontaneous decay rate of the excited
atom using Eq. (70).

VL. COMPARISON WITH THE CLASSICAL THEORY

Results for the total decay rate calculated from Eq. (70)
using the exact functions D,f'j'., g;‘;, and Cf‘j’ are in excellent
agreement with those of classical electromagnetic theory [2].
These are shown in Fig. 2 for a gold mirror with refractive
index n=0.505+ 3.66i. The total decay rate contains a non-
radiative component due to energy transfer from the excited
atom to the absorbing mirror via the near-field Coulomb in-
teraction. The contribution due to the Coulomb potential U
alone may be obtained from Eq. (70) by setting Dj; equal to
zero,

wY . 67cie, 1
L= Im—5— f f d&rdr
Wspont Wq € w,Jz<0Jz'<0

X F[j]m(l'a_l')gf,?,,)w"(r,r')F,,m(r’ -r,).
(127)

Using Egs. (10) and (90), the iritegrals overr and r’ can be
evaluated to give

U
Weonj 3 6; [ -1 L (2m)

=- Im|
WO, 832 M at@ari

where 6;=2 for j=z and 0;=1 for j=x or y. Equation
(128) agrees with the classical result [2] for the rate of non-
radiative energy transfer in the limit 2,—0.

Nonradiative decay is absent for a perfect dielectric. In
this case, our results for the decay rate W; are in excellent
agreement with the results of classical electromagnetic
theory and with those based on quantization of macroscopic

- Dielectric surface:
n'=_3.0 W 2

Normalized lifetime
()

Vertical dipole

0 5 10
kozg

FIG. 3. Lifetime of an excited atom near a lossless dielectﬁc
surface. Solid lines are the results of the spatial-mode quantization -
theory. Dots are the results of our quantum theory. :

spatial modes [4]. These are shown in Fig. 3 for a dielectric :
half space with refractive index n=3.

VII. CONCLUSION

In this paper, we have presented an exact solution of a
microscopic Hamiltonian model of an absorbing dielectric
half space and used it to calculate the spontaneous emission
rate to order e? of an excited atom near the surface. Because
our calculation is based on a fully canonical quantization
scheme, it provides a fundamental demonstration of the va-
lidity of the classical electromagnetic theory of the rate of |
spontaneous emission near an absorbing dielectric surface. |
This serves to increase our confidence in the results of recent
work on spontaneous lifetime based on classical electromag-
netic theory [10]. Also, the exact photon Green function for
the half space given in the Appendix can be used to treat
other quantum-mechanical interaction phenomena between
charged particles and the electromagnetic field near an ab-
sorbing plane surface, such as the level shift of an electron
undergoing cyclotron motion near such a surface [11]. In the
above discussion, we have only considered the case for
which the excited atom is on the air side of the surface.
However, our approach can be extended to treat the other
case also.

APPENDIX: GREEN FUNCTION
FOR THE TRANSVERSE PHOTONS

In this appendix, the steps involved in solving the Dyson
equation Eq. (116) exactly for the photon Green function
Dji(ry,ry) are outlined and the complete solution is given.
The details of the calculations can be found in [9].

Following the standard Wiener-Hopf technique [12], we
decompose the unknown function Df';(rl ,I2) into a sum of
two quantities DEJ-“ “(ry,r;) and Dﬁj_) “(r.ry), the first of
which vanishes for z,>0 and the second of which vanishes
for z;<0. Then, the Fourier transform of Eq. (116) with
respect to (x;—x3), (¥;—y,), and z, is taken. After rear-
rangement of terms, we obtain
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ki | k;k
[0*—T(w)—k*c?+ig] 6‘,,,,+H(w)—2—} 1 (5,1 721
Nk)=— ——gg——e i
(+)( k) ‘ Dy (k)= € W — k2T +ie® o (A4)
b4 - N .
—2—2—7—— D(- ) NV |
o —kc +ie i (ke - The 3 X3 matrix in curly brackets on the LHS of Eq. (A1)
ki) can be factorized into a product M M) where
( Oi3— 'ET)

N DY
=D (kz)+2(w,K)mD3j(0), (A1)

where II(w) and 3(w,K) are the bulk and surface photon
self-energies divided by ¢,

M =[iL(K) % k,c]8,+ il S(K) ~ L(K) |2
ij =R ij 72_ (AS)

and

= 2.2 — 2
N(w)= - (lo))-1], (A2) L(K)=VK*c*+11(w) - w*—ie, (A6)
o e (o)) 17 S(K)=VK*cI-w’~ic. (A7)

(A3)

R Rl 71T

and K= \/kx2+kyz. In Eq. (Al), we have suppresscd the de-
pendence of the Fourier transforms D (k ) and D(o)(kz)
on z;,w, and the transverse momentum (ky ,ky). Also,
D~;‘}(0) is defined to be the Fourier transform of D,f‘}(rl ,Ia)
with respect to (x, —~x,) and (y, —y,) only and evaluated at
21=0, while D(o’(kz) is the Fourier transform of
D(O (r;.ry) with respect to (x;—x,), (¥, —¥,), and z,,

The branches of the square roots in Eqs. (A6) and (A7) are
chosen so that the real parts of L(K) and S(K) are always
positive. Notice that M( ) have singularities at k,=*iK
due to the factor 1/k2. As a result, the standard Wlener-Hopf
technique must be extended to deal with these singularities.
This consists of subtracting appropriate poles from both
sides of Eq. (A1). After multiplying this equation throughout
by (iS—k,c) times the inverse of M‘™ and rearranging
terms, we obtain

(+)( k,)
(+) my 227 (+) (-)-1
Min'| S5 vke ~Ami ¥ Min (DG (k) (iS~kc) AL
knk,
O3~ T
= MG DRI +3(0.K) = D3(0) | (S — ko) = MEPAG) - MDTIAG)  (aB)

where we have subtracted quantities M{;’A'") and
M ‘A( ) from both sides of the equation so as to make
the resndues of the poles at k,=iK and k,=—iK due to
M(+’ and M( ! in the ﬁrst and second terms, respec-
tively, on the left handside (LHS) of Eq. (A8) vanish. As a
result, the first and second terms on the LHS of this equation
are analytic in %!*) and 3¢7), respectively, where Z(* con-
tains the upper half of the k, plane, 3() contains the lower
half, and Z¢*) and 3¢~ overlap in an open region.

The RHS of Eq. (A8) can be decomposed [9] into a sum
of two terms P{)(k,) and P{])(k,) analytic in 2*) and
3 respectwely By equating the first and second terms on
the LHS of Eq. (A8) to P{;")(k,) and P{;)(k,), respectively,
we obtain the formal solutxons

D (k) =[iS(K) + kA + ML Pk, (A9)

D (k)= [AS)+ MGIP (k)] . (A10)

iS(K)—k,c

The solutions Egs. (A9) and (A10) still contain the un-
known quantities D3](_O) A(” , and A( ) the latter two of

which occur only in the combinations r,,,Af,l ) and r, ALY s
where r and r’ are vectors with components

ri=(ky ,ky iK), (Al1)

ril=(kka —iK). (A12)

y ’
To solve for these quantities, we first use the fact that
D{(k,) and D{’(k,) must be analytic in %*) and 3(°),
respectively. Thus the residues of the poles at k,=iK and
k,=—iK due to M{’~" and M’ in Egs. (A9) and (A10),
respectively, must vanish. This gives two simultaneous alge-
braic equations

lim &, PS5 (k,)=0, (A13)
k —iK
lim k,P$;'(k,)=0, (A14)

k,——iK

which can be solved for the unknowns r A(ﬂ and
A( ). The results for z,=0 are
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( s _q:q.,.)
2i 1 o L+S+2Kc ] L [_
G-DG-Ko) i (5-LAS+Ke) || L+S <

r,,,Af,,‘;)= Ao

2i
A.,(s “L)XS—Kc)

1 -
[ “Kag, +2(w,K)amav;',-(0)],

q.q,..)

L+Ke  (S+Kc)(L+Kc)(L+S+2Kc) ,}(6"’

(= )__ — ,—Stalc
"mi [ s=L T (S-L)%(S-Kc) L+S [ ¢ szl‘sf”:(“’ K)é, 3931(0)]

2i(S+Kc)? g - ;
AO(S L)Z(S Kc) r, e 28, +E(w K)6,, 3D (0) ‘ '(Alﬁ):

where

iS
qi= kaky’——C_ s (A17) }
, is | | !
q9; = kkay’?' ’ (A18)
4
L+5+2Kc]?

(A19)

S—-L

Next, the inverse Fourier transform of D‘Zj"(kz) with respect to k. for z;=0 is calculated from Eq. (A10) by contour

integration. The result for z,=0 is

Ew(z )=Jx d_kz_eik::lD(—)(k )
AN —22’11' if :

(0 l q'q; -5 l 3 — K- o
— Jw ! n/c Kz \2 o
_D( (Zl)_[-—(ai3——7—)e |/ .|_____2.e I (w’K)D3(O)

S—L 1 ql,q; —8§=, 1 rir -Kz ( "qlqm) 1 _SZZ/C
[ p— - 5 fc — +
2(L+8) Sc( Sit )e vt sze "I\ Gim ) 50 Spit (o, K)5,,,3D (0)

S-L

qi4i L ke _
_ 1 . .
2K(L+Kc) pad Onjt+ 2(0,K) 843D35(0)

! ) ] -Kz
. 1
__2.(5’1 _2__' r,e +_(______)_2.e r

k| K+~
. i(S—L)? S+Kc o Keiy - r,_q'K(K C) g-Sule pr 400
IK(L+KO)(S+Kc)? | 2(S—Ke) L ? e

q

. g/ K| K——

i(S—L)? { S+L—2Kc _,. i ( c) -5

_ “Kzyp 4| o~ 2y fe (+) A20
ZK(S—Kc) | 2(S-L) EAN L e I'mA (A20)

where




)

7

8)

ur

b simmdimaitn o e
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( 5 q{q})
— __‘i__?_é‘s(ll’lz)/c_ ___.L;.J_-—— ) Z|>Z2
2S¢ 2K(wtti S

(0)~(zl)= .l.( (Ail)

_ ___q_)_esu.—zz)/c_ 21<2,.

Since the RHS of Eq. (A20) contains the unknown quantity D3 3/(0), we obtain an alg bmc equatlon for this unknown quantity
by settmg i=3 and z,=0 on both sides of Eq. (A20). The resulting solution for D, __0) «can be ‘written in the form

Dsj(o)- 183j+ yarj + yarj+ 74‘1}7 (A22)
where
_l 1 _i_L__(l.F 282) 1 ~Szlc - A23
MER,| T 25¢ 25c(L+S) 2] | IPA (A23)
1 i, _is-L) +S(K+?) i(S—L) e ray) N
TR | 207 2(L+Ke) o 7o T RTTROGER) & ot @)= olfth)),
(A24)
= 1 i(s L) 1 =Szy/c A25
Y=, | T 2LES) & &° oga— 02| (A25)
i(S L(K2+Sz) i(S LK(K+S)
1 i STD{K +'( ) A L < (K s)+ (K+s
74—A, 2¢%c? 2(L+S)q*c* 2(L+S) w?q* Eoe o q 1 ) c
K S S )
to | Bl KT +B\ K- 2] (A26)

andAl—(l+(TlW|+Ule l)
Equations (A23) to (A26) contain the quantities a;, B;, and o;, as well as the quantities U;, V;, and W, through A,
These quantities are given for z,=0 by

2i L Cgore
O I SO —KOLTS) & (A27)
2= Ao(szig;;ss: Iif)?l,+$) elo‘—sz"c’ (a28)
ay=- Ao(s—lji(s— ) 'el;e—hz’ (a29)
B.=A—()(2;L__L~L—+)z% %oe‘s‘i", (A30)
B;= - Ao(ﬂi;f; f Ko) .:_oe—Kzz, (432)

and
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s
_ (S—L)* { S+L—2Kc S(K_Z)
N=Tos5—ko)l 25-0y LT 4% 1)’
| (x3)
- (§—L)? S+Kc S\K+z
%= ST K S+ K | 265-ka) L1 % )
) 2| p2 $2\1
_ 1( ,82) K __s-L | 28 S(K+ZT) (S-L)K
U= a5\ 22 T e L T PR T T i L+ Ke) &
s(x S)
L =LK | te (S—L)K
s ol M T % | T i@F KO-k
(5 _q.-qs) r
2 [L¥Ke  (S+K)L+Ke)L+S+2Ke) , . ?‘2 o PKS+Ke? S I
=8, S-L " G-D)X5—Ko) s (@K T -Ko) > @K) (A36) B
(5 _q.-qa) _
W Y 1 L+S+2Kc ST Y 2K s
e W R AT S U AL T I % R S Wy LTy 2y Rt

This completes our determination of all the unknown quantities on the RHS of Eq. (A20). To compute the spontaneous
decay rate by Eq. (70), the photon Green function Dj(r, r2) appearing in the first term on the RHS of this equation is first
computed by evaluating the inverse Fourier transform of Dji(z,) given by Eq. (A20) with respect to k. and k, numerically,

dk dk, . - ]
'D?;'(rler):J’ j —(2—1r)2¥'e"‘x(“'l_‘2“"‘)’("_"2)0?}(21)- (A38)

Next, by using Egs. (10), (122), and (126), the integrals over r and r’ in the second and third terms on the RHS of Eq. (70)
can be reduced to integrals over the transverse momentum (k,,k,) in which the photon Green function occurs only through the

quantity 5‘5}(0) given by Eq. (A22).

[1] K. H. Drexhage, in Progress in Optics XII, edited by E. Wolf
(North-Holland, Amsterdam, 1974).

[2] R. R. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 62,
2245 (1975).

{3] H. Kuhn, J. Chem. Phys. 53, 101 (1970).

{4] H. Khosravi and R. Loudon, Proc. R. Soc. London Ser. A 433,
337 (1991).

(5] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992).

{6] S. M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. Lett. 68,
3698 (1992).

[7] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Meth-
ods of Quantum Field Theory in Statistical Physics (Dover,

New York, 1963).

[8] G. B--Mahan, Many-Particle Physics, 2nd ed. (Plenum, New
York, 1990). . ’

[9] M. S. Yeung, Electronics Research Laboratory, University of
California at Berkeley Report No. UCB/ERL M95/112, 1995
(unpublished).

{10] Z. Huang, C. C. Lin, and D. G. Deppe, IEEE J. Quantum
Electron. 29, 2940 (1993).

[11] D. G. Boulware, L. S. Brown, and T. Lee, Phys. Rev. D 32,
729 (1985).

{12] P. M. Morse and H. Fesbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), Pt. 1, Chap. 8.




