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An incident wave source for finite-difference time-domain (FDTD) computation
of electromagnetic scattering involving layered dispersive media is described.
The method is based on the decomposition of an arbitrary incident wave into
its frequency components and computing the corresponding steady-state fields
in the FDTD lattice analytically. The wave source can in principle generate an
incident wave obeying the dispersion relations and reflection and transmission
relations of the FDTD lattice exactly. Numerical results show that, in practical
computation, the accuracy of the generated incident wave is limited by FFT
aliasing error occurring during waveform synthesis.

KEY WORDS: Electromagnetic scattering: finite-difference time-domain com-
putation; dispersive media.

1. INTRODUCTION

In many applications, it is often necessary to compute the electromagnetic
scattering by an object embedded in a layered medium due to an incident
wave originating from a distant source. When the finite-difference time-
domain (FDTD) method is used for such a computation, the computational
domain is truncated to a finite size and special boundary conditions are
applied on the domain boundaries to absorb the outgoing waves. Also, the
incident fields must be known at all time steps throughout the computa-
tional domain, or over a closed surface enclosing the scattering object, in
order to apply the necessary excitation. In the former case, referred to as
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the scattered-field formulation, the FDTD method is applied to time-step
only the scattered electric and magnetic fields throughout the computa-
tional domain. The total fields are obtained by adding the known incident
fields to the FDTD computed scattered fields. In the latter case, referred to
as the total-field formulation, the computational domain is divided into
two regions by a fictitious surface enclosing the scattering object. In the
interior, total-field region, the FDTD method is applied to the total electric
and magnetic fields, while in the exterior, scattered-field region, the FDTD
method is applied to the scattered fields only.

For accurate results, the incident fields used to excite the FDTD com-
putational domain should be the fields that would propagate in the FDTD
lattice, rather than those that would propagate in physical space, in the
absence of the scattering object. In the scattered-field formulation, the inci-
dent and scattered fields may nearly cancel one another in certain regions
of the computational domain, such as the interior of a shielded cavity or
the back side of an absorbing layer of material. To minimize differencing
noise in the computation of the total fields in such regions, the incident
fields obeying the same dispersion relations as the FDTD computed scat-
tered fields must be used. In the total-field formulation, the incident fields
applied to the fictitious surface enclosing the scattering object are allowed
to propagate across the interior FDTD region. However, in order for the
fields propagating across the interior region by FDTD to be cancelled
exactly by the incident fields applied to the fictitious surface as the former
fields attempt to pass out of the latter surface, the incident fields applied to
the latter surface must obey the same dispersion relations as the FDTD
computed fields in the interior region.

To generate the incident fields obeying the dispersion relations of the
FDTD lattice, one approach is to set up an auxiliary one-dimensional
FDTD lattice having the same dispersion relations as the three-dimen-
sional FDTD lattice in the direction of propagation of the incident wave
[ Holland and Williams (1983)]. The required incident fields are obtained
as solution to the auxiliary one-dimensional problem. However, this
approach is straightforward only when the incident wave propagates along
a coordinate axis. In the case of off-axis propagation, the parameters of the
auxiliary one-dimensional FDTD lattice would have to be frequency depen-
dent, in order to match the dispersion relations of the three-dimensional
FDTD lattice exactly at «/l the frequencies contained in a finite-duration
incident pulse. Furthermore, in the case of a layered three-dimensional
FDTD lattice, the auxiliary one-dimensional FDTD lattice would have to
possess the same reflection and transmission coefficients at the boundaries
between adjacent materials as the three-dimensional lattice, at all the
frequencies contained in the incident pulse. It is not obvious how such an
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auxiliary one-dimensional FDTD lattice could be constructed for the gen-

eral case of off-axis incidence in a layered three-dimensional FDTD lattice.

In this paper, the incident fields obeying the dispersion relations of a
layered, dispersive three-dimensional FDTD lattice are generated by
decomposing the incident pulse into its frequency components and comput-
ing the steady-state fields in the three-dimensional lattice due to each fre-
quency component analytically, by solving the corresponding steady-state
FDTD equations. The incident waveform at each point of excitation in the
computational domain is then obtained by Fast Fourier Transform (FFT)
of the computed steady-state fields at that point. The incident waveforms
so obtained obey the correct dispersion relations and reflection and trans-
mission relations of the layered three-dimensional FDTD lattice, for
arbitrary direction of incidence and frequency content of the incident pulse.
These incident waveforms are thus suitable for accurate FDTD computa-
tion using the scattered-field or total-field formulation.

The computation of the steady-state fields in a layered, dispersive
FDTD lattice is discussed in Section 2. The method described is numeri-
cally stable for propagating und evanescent waves in an FDTD lattice
consisting of an arbitrary number of lossy, dispersive layers. Numerical
results are presented in Section 3 to demonstrate the accuracy with which
the incident fields can be generated by the wave source.

2. STEADY-STATE FIELDS IN A LAYERED FDTD LATTICE

An arbitrary incident wave propagating in the uppermost layer of a
layered medium can be represented by a superposition of plane waves of
different frequencies, polarizations and directions of propagation. It is only
necessary to consider the steady-state fields in the layered FDTD lattice
due to a single incident plane wave of frequency w, polarization E™ and
transverse wavevector (k ., k). The results for an arbitrary incident wave
are obtained by superposition.

2.1. Dispersion Relations

The geometry of an FDTD lattice consisting of M + 1 homogeneous
layers separated by M planar interfaces is shown in Fig. 1. The FDTD
cells are constrained to have the same widths (4., 4,) in the x and y
directions, but their heights 47 in the = direction may vary with the layer
index m. In the standard Yee algorithm [see Yee (1966)], an FDTD cell
labeled by spatial indices (i, /, k), as shown in Fig. 2, is associated with six

- n n n n+1/2
field l<720mponents, Ex,{;l/z.,/,kﬂ Ey,t‘.j+1/2.k’ Ez,i.j.k+1/2’ X 0 j1/2 k+ 1720
n+ n+1/2 - 1Q . 1
H S O kv B2 2 12, 0o Where n s the temporal index. In the
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steady state, the wave in layer m due to an incident plane wave of fre-
quency w and transverse wavevector (k,, k,) can be written as the sum of
a downward propagating and an upward propagating plane wave in the
FDTD lattice,

= ——y -

n m 7]
Ex.i+l/2,j,k Ex
n m
Ey,i,j+l/2,k Ey
n Em
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rm
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Hrm
X
rm
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rm
L Hz -

where j=./ — 1 is the unit imaginary number, to be distinguished from the
spatial index j, and k7' is the = component of the wavevector in layer m.
The latter is determined by the numerical dispersion relation for layer m.
Furthermore, not all of the field coefficients (E7, ET7', ET, HT, H, HT),
or (E7", ET" ET, H", H", HT"), in this equation are independent. To
see this, consider the downward propagating plane wave represented by the
first term on the right-hand side (RHS) of Eq. (2.1). The FDTD equations
for this plane wave in layer m can be written in accordance with the Yee
algorithm as

s e e
L ET(y e/ — = At H?” — H” 2.2
6’m x(}m(' ﬁm) | Ay =z Al;l y } ( )
E o - l o e__jkm: A'": 1 _ ejk.\, 4, 2 3
L EM(y, R4 By fr | Tgm T pm .
Em y()mc ﬁ/‘n) I AZ, x Ax z } ( )
. [ 1 — ek ds [ — e/
EmET (7 e?” 4 — B,.) = Al HT — HT 24
z (/ € ﬁm) i Ax k! Ay x } ( )
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Of fre' " —Jes At I € _j/\"r A — 1 " jk‘:" A’:" — l m
sum of U H (1 —e ™"y = — Ay -—Z——E: _TE" (2.5)
L » = .
in the
N B e/‘/“l:" A’:” — 1 e _"-/7‘—.\' 4. _ l
L H (1 —e™ )= —At| oo E" o Fm 2.6
’L ¥ ( ) | Al_.” X Ax =z ( )
- i r C)_'jk"' d, 1 e—j/\’.‘. AJ. __ 1
UnHT(1—e ™74 = — gy —-———E”,’—————Ef”J (2.7)
VR T
where ¢,,, 4, 7,,, and f3,, are parameters characterizing layer 7. These
d lu 7" y 1 p R~ y
parameters are given in the Appendix for three commonly used, lossy,
dispersive material models.
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(2'4) Fig. 1. Layered FDTD lattice consisting of M + 1 homogeneous layers separated by M

planar interfaces.
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Cell (i, j, k)

X

Fig. 2. FDTD cell with its associated electric and magnetic field components. The electric
field nodes lie at the centers of the edges and the magnetic field nodes lie at the center of the
faces.

By substituting Egs. (2.2)~(2.4) into Egs. (2.5)-(2.7), one derives the
numerical dispersion relation for layer »:

sin(k . 4./2) 3+ sin(k,. 4,/2) 2+ sin(k” 47/2)77
4 A A

X v

Sin(a) A{/z):I - _,amgm( Y ﬁm) (1 N e__/‘m AI) (28)

= llllglllﬂy"/” 2
F / { At 4(4r)?
This relation allows &7 to be solved in terms of the transverse wavevector
(k.. k,) of the incident plane wave.

From Egs. (2.2)—(2.4), one readily derives the relationship

( ] _ C’*i/‘-»" /lv\.) Ay A/__”E’(, + (1 _ ew_i/\'_\. /,l‘l.) A.\. A/:IIEVI‘I.I

Ll

(e M) 4 4, EM =0 (2.9)

This relationship allows E”' to be expressed in terms of (£7', E'"). Then,
using Eqgs. (2.5)~(2.7), the magnetic field coefficients (H"", H"’_’,'H’__”) can
also be expressed in terms of (E”, E”). This shows that only two of the six
field coefficients (E”, E™', E”, H", H™, H") of the downward propagating
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plane wave are independent. Similarly, only two of the six field coefficients
(£, ET ET, HT, HY™, H™) of the upward propagating plane wave are
independent. Thus, the fields in layer m, as given by Eq.(2.1) are com-

pletely determined by four independent coefficients, which may be chosen
as (E7,E},ET, ET).

2.2 Fields in the FDTD Lattice

To find the independent coefficients (E£7, ET,ET, ET) for all layers
m, one can use the approach of matrix optics. Instead of applying the
boundary condition of continuity of the tangential field components across
each planar interface as in matrix optics, here one applies the FDTD equa-
tions to the magnetic and electric field nodes situated in the immediate
vicinity of each planar interface. For simplicity, each planar interface is
assumed to coincide with a cell face. This situation can always be realized
by choosing the FDTD cell heights 47 in such a way that each layer con-
tains an integral number of FDTD cells in the = direction.

The interface between layers m and m + 1, which coincides with the bot-
tom face of an FDTD cell (4, j, k) with k= N,,, is illustrated in Fig. 3. The
magnetic field components at the two magnetic field nodes immediately
above the interface are given by Eq. (2.1) with k = N,,. Thus, for these nodes,
Hy Y i p=[HTOE + H™Mp )] efondr—fik 4o+ 3,40 and similarly

- n+1/2 -
for H} %12 j k4172 Where

PLE) = o ENk AT (2.10)

The magnetic field components at the two magnetic field nodes imme-
diately below the interface are given by Eq.(2.1) with superscripts m
replaced by (m + 1) and k = (N, — 1). Thus, for these nodes, H,%'/% \, « 1
=[HZH W P 4 HTm+ Dy (=) plondi=jlik dc+ k40 and  similarly  for

n+1/2 )
H,V. i+ 172, k+1/2 Whele

PlE) = @ EIN, = DA AT (2.11)
However the field components at the electric and magnetic field nodes lying
on the interface are not given by Eq.(2.1), since the former field com-
ponents obey interfacial FDTD equations rather than the FDTD equations
(2.2), (2.3), and (2.7) for the interior of a layer. Instead, the field com-
ponents at the interfacial nodes are assumed to have the form

n n
Ex,i+l/2,j,N,,, F
j — Kk, ik, A4,
ES s, G | efom AT At ) (2.12)
Hn+l/2 Om

i+ 1/2, j+1/2.N,, 4

KISt e R Y T A SRV S AT B AR I 2 T
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where & has been set equal to N, on the left-hand side (LHS) of this equa-
tion. By applying the contour-path method [ Taflove (1995)] to the interfa-
cial nodes, one derives the interfacial FDTD equations for these nodes,

mprm A’;‘+A’;+1 jk m m rm -
F F :A[[T(l—ejyd)’)Q —Hy(pf:)_Hy (/55,1)
m4+14(+) r(im+1 -
+HTHNYC 4 Hm Dy )} (2.13)
Am+Am+l )
+Hm+1lp(+)+Hr(m+l)l//(—):l (214)
g AL o4 ] s ]
Q'”(l—e—fw‘“)=—-[e——}—F"1—i——G"1} (2.15)
Lo 4, 4,
where
g, A™ ) Epmar ATF!
7= (e 2 = ) + e (1 0 = ) (216)

The unknowns in these equations are (F™, G™, Q™ E7 E7, E7, ET"),
assuming that (E7*!, E7*+L EMm+ D Erm+ D) are known. To solve for
the former set of seven unknowns, one needs four more equations besides
Egs. (2.13) to (2.15). These are the FDTD equations for the four magnetic
field nodes immediately above or below the interface, as shown in Fig. 3.
Using Eq. (2.1) with the appropriate indices m and k, these equations can
be written as

[HT ) 4 Hmpl =] — p—Jodry

At Te 40
= {ﬁ— (EZ¢,7+ ET9,7)
Hm v
1 ar i n ap M Ui
= (BN T B e ™I 4 — G’")} (2.17)

[HTGUH + H )Y (1 — e/t
_ A[ |:€—jkA\'AA\'_ 1

= T (ETL + ETLT)
Hm

X

1 ap m ar it m
— o ER,T ME  E LT e T A F'")} (2.18)
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To simplify the notation, it is convenient to introduce the following
quantities:

At(e7=4x 1)

= 221
T Hom A (2.21)
At{efr 4y — 1)
"= 2.2
n" — (2.22)
m=y
+ A7
nT(i)zAl(e i _ 1) (2.23)
) lleAz
nmnme —Jk, 4, \
() _x ¥
Al = e T (2.24)
(nm)Z e—jk_rdy
(+) _ ,,m(%) y
(;7"’7)2 e_jk.\' 4y
(), ,m(x) x
Cm =¥, HT(i)e'T'jkTA’:n (226)
mo,m ,—jk, A'v
pE=t=lt (2.27)

= — g i m
n;n( £)p FIk: 4

By substituting Eq.(2.15) into Egs.(2.13) and (2.14) and using
Egs. (2.5)~(2.7) and (2.9), one obtains

En1(/)(+)

Fm R(+) S(+) R(—) S(—) Em¢(+)
. m m m m yrm
[GM}—{UH-) pee) ) V(——):l E""(/)(')
rm {—)

ET,,

+1,,(+)
ETT Y,

. R(r'n++)l Sfﬂ_:?l Rﬁ'n—;}l Sﬁ‘n_-i—)l Ef;1+ : lp(m—*’) (228)
Uy v ok v ESmT LD
Er(m+1)l//(-—)
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m m = At 11 12 m m (229)
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yllowing and
(2.21) Wy=T"(1—e™*) ~u, (Zﬁf%ﬁl) (n7)? e (2.30)
(2.22) W=ty (éimj_—;—n::> nrnye o d (2.31)
(2.23) Wy = s <Ai—" +2Z’T+’>,7;n,7ye-kaax (2.32)
224 Wy=I"(1—e 24—y, <A——————T +2A’Zn+l> (n7)? & ~Fex s (2.33)
(2.25)

Finally, by substituting Eq. (2.28) into Egs. (2.17)-(2.20), the matrix-
optics relationship between (E7,E}, ET", ET") and (Em+1, E;”“,

¥
(2.26) ElmTD, ERmT DY is obtained:
(227) E7 L) ET L n
Em(p(-t-) Em+1l {(+)
y rm . -1 y m
i E,m(/)(__) _[Am] [Bm] Er(m+1)lp(._) (234)
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r - (m _
Ey (,bm E_v l//m
where [4,,] and [ B,,] are 4 x4 matrices,
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+ ‘:)71 L/t??‘ ) + C'n [/in_ !
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and the coefficients P{*), 0(*) and ¢, are defined as
m,,—jk.d.
e A4 X
(+) . _ _"Mx o 2
P = nm(i)€$ik§"42" (2.37)
m,—fk. A,
R
Q =) = - 77} m m (2'38)
m ,7M(i)€—?/‘k_- 4.
At
C,n=———dm (2.39)
Hm 4

Equation (2.34) can be applied recursively to determine the field coef-
ficients (E7', E7', E'", %) in all the layers m=1, 2,.., M+ 1 in terms of
the incident field coefficients (£, E) in the uppermost layer m = 1. To do

so, Eq. (2.34) is first rewritten as:

EV L) EZHidL)
1

. _ = ( 1 -)

ET¢L T ETTTUeL
£ (=) ( 1) A (~

E_’Vm(/)m E_’vm+ qbﬁn—f—)l

where
[Cnl=[4,]1""[8,]
ej(Nm—Nm+1_l)ki'n+ldt'"+1[12:' O
X O ()_—ﬂNm—Nm+l—l)k’:"+[A

(2.40)

’:"“UZJ
(2.41)
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and [7,] is the 2 x 2 identity matrix. By repeated application of Eq. (2.40)
for I <m < M, one obtains

) M+1 4(

EV¢, EX M
Em¢(+) M+ (A—}—)l

m +
Efm(p(—) = [‘M(m)] 7 0 (242)
x ¥m

(=)
ETY, 0

where [M"] =T, [C,] and it has been assumed that there is no
upward propagating wave in the bottommost layer m= M + 1, so that
ETM*D = ErM+D =0, Using Eq. (2.42) for m=1, one can solve for the
coefficients (E¥*!, EM*!) of the transmitted wave in the bottommost
layer and the coefficients (E7}, E 7') of the reflected wave in the uppermost
layer in terms of the incident wave coefficients (E1, E by

BT _[Mp MRy

gl Tl w@) LEber
B[ MRTERL] g
o) Loy b |l Er i,

Then, by substituting Eq. (2.43) into Eq. (2.42), the field coefficients in the
remaining layers m =2,.., M can be found.

2.3. Numerically Stable Formulation

The iteration scheme based on Eq.(2.42) is numerically stable when
the wavevectors k7' in the various layers are real. This is the case for
lossless layers and propagating, as opposed to evanescent, waves in the
various layers. A finite-duration incident pulse traveling in the FDTD lat-
tice, however, usually contains a large number of frequencies, including fre-
quencies so high that the corresponding plane waves are evanescent in the
FDTD lattice, as characterized by a complex solution &”' to the dispersion
relation Eq. (2.8). In such case, the iteration scheme based on Eq. (2.42)
can be numerically unstable, especially when the layer thicknesses are large.
To overcome this problem, one can adopt the enhanced transmittance-
matrix approach used in the rigorous coupled-wave method for electro-
magnetic diffraction by grating structures [ see Moharam et «l. (1995)]. In
this approach, the troublesome term e/™n=Nne1= DA™ AT iy Ba (241,
which increases exponentially rapidly with increasing frequency above the
cutoff frequency of the FDTD lattice, is factored out of the matrix [ C,,],

[C,,] = M= N = DRTHAZ T & (245)
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where

~ _ L[ [45] 0
[Cm]:[Am] l[Bm]{ 02 e—-z_/‘(Nm—NmH—l)ki."+[A;"+l[12]:l (246)

This leads to a numerically stable from of Eq. (2.42),

+1
E;”(p(mﬂ EYT d)g\;-)kl
Em(/)(+) M+1 5&-)1
yim — LSBT A (m) y +

= /" F10™] (2.47)
ET¢) 0
(_
E™$l) 0

where [ ] =TT, [C,] and " =32 (N, — N, — ) k2*142+".

3. NUMERICAL RESULTS

The formulation discussed in Section 2 was implemented in a three-
dimensional FDTD code for layered, dispersive media. The computational
domain consisted of 46 x46 x46 FDTD cells. The medium consisted of
three layers of different materials separated by horizontal planes coincident
with the bottom faces of cells labeled by (i, j, k) with k=17 or k=32. The
parameters of the material models were chosen so that the refractive indices
of the three layers at a reference wavelength /, were ny, n, and n;, respec-
tively. The total-field formulation was employed for the computation, in
which the scattered-field region consisted of the outermost two layers of
FDTD cells in the computational domain. The domain was excited by a
finite-duration pulse with arbitrary polarization and direction of incidence,
whose waveform was in the shape of the time derivative of a Gaussian
pulse,

Eim:(”) = -3 \/—:):, <l’l ~ Mshige - 1> e—[3((n—-nshiﬁ)/”0_ D12 (31)

n 0

where 1, is the width of the Gaussian pulse and ngy,; is the delay, both in
units of Ar. Also, the factor 3 \/EZ is used to normalize the peak amplitude
to unity. The cell dimensions were 4, =4,=47=1 unit and 4¢ was
chosen so that ¢ 4r=0.5 unit, where ¢ is the velocity of light in free space.
For simplicity, the first-order Higdon absorbing boundary condition
[ Higdon (1986)] was used on all six sides of the computational domain.
The incident pulse Eq.(3.1) was decomposed into various Fourier
components with frequencies w; and amplitudes f;, i=1,.., N, where N i3
the sample size for waveform synthesis by Fast Fourier Transform (FFT).
In order to represent an incident pulse propagating in a well-defined direc-
tion (), ¢), the incident plane waves corresponding to the various Fourier
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components were all assumed to have the same transverse wavevector
(k. k)= (ko sin 8 cos ¢, ko sin Osin ¢), where ko=2m/i, and A,=157
units. Furthermore, all such plane-wave components of the incident pulse
were assumed to have the same polarization, which could be TE or TM.
In the former case, the y component of the incident electric field vanishes,
while in the latter case, the y component of the incident magnetic field
vanishes.

For each plane-wave component of the incident pulse, the steady-state
field distribution in the FDTD lattice in the absence of a scatterer was
computed using the analytical procedure discussed in Section 2. The result
in each cell on the fictitious excitation surface S was saved. Then, the stored
steady-state results at each cell of S were weighted by their corresponding
Fourier amplitudes f; and the resulting time-domain waveform was syn-
thesized by FFT. This time-domain waveform represents the incident wave
in the FDTD lattice in the absence of a scatterer. Using the same proce-
dure, the time-domain waveform of the incident wave over an observation
plane j =26, which passes through the middle of the FDTD lattice, was
also computed analytically for comparison with the FDTD results.

In each test example, the absolute values of the dominant component
of the total electric field, namely, E, or E, for TE or TM polarization,
respectively. in cells on the observation plane j=26 and lying within the
total-field region were recorded at each time step n. These values were
averaged over all such cells to obtain an estimate of the average magnitude
of the dominant component of the electric field in the total-field region of
the computational domain at each time step 7. Next, the absolute value of
the difference between the value of the dominant electric field component
computed by FDTD and the value obtained previously using the analytical
procedure was found for each cell with j=26 and lying within the total-
field region, at each time step . These values were averaged over the same
cells to obtain an estimate of the discrepancy between the FDTD and the
analytical results in the total-field region at each time step 1. Lastly, the
absolute values of the dominant electric field component in cells with j =26
and lying in the scattered-field region were recorded and averaged over the
same cells, at each time step n. This gave an estimate of the residual error
in the cancellation of the FDTD computed fields outside the excitation
surface S by the analytically computed incident fields applied to S.

Figure 4 shows the results for the lossless dielectric case, with n, = 1.5,
ny=20 and n;=10. The incident pulse parameters were no =44,
Naure = 30, (0, ¢) =(179.9°,3.04°) and TE polarization. A sample size of
N = 2048 was used for waveform synthesis by FFT. The solid curve shows
the average magnitude of £ over the observation plane j =26 in the total-
field region, as a function of the time step n. The dashed curve shows the
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average magnitude of the discrepancy between the FDTD and analytical
results over the plane j =26 in the total-field region, as a function of n. The
dotted curve shows the average magnitude of the residual field over the
plane j= 26 in the scattered-field region. From the solid curve in Fig. 4, the
electric field in the total-field region is seen to start from a very small value
at n=1, rise after a delay of about 80 time steps to a peak average
magnitude of about 0.3 and then decay as the finite-duration incident wave
eventually passed out of the computational domain. Even though the inci-
dent pulse given by Eq. (3.1) had a width n, of only 44 time steps, the inci-
dent wave in the FDTD lattice extended over a much longer interval of
several hundred time steps, due to the multiple reflections occurring within
the layered lattice. From the dashed curve in Fig. 4, however, the dis-
crepancy between the FDTD and analytical results for the total electric
field started at a magnitude of about 107¢ and remained at or below this
value for all time steps n. Most of this discrepancy can be attributed to
FFT aliasing, since the sample size of N=2048 used for the FFT was
barely large enough to synthesize accurately an incident waveform lasting
several hundred time steps. Thus, whereas the FDTD fields were initialized
to zero at n=0, the analytically computed fields in the total-field region
were already found to have a magnitude of about 10-%atn=1dueto FFT
aliasing. This aliasing error can be reduced by using a larger sample size N
for waveform synthesis, but at the expense of increased computer storage

. requirement. By comparing the solid and dashed curves in Fig. 4, one can

conclude that the difference between the analytically computed fields and
the FDTD fields in the total-field region was negligible except for the FFT
aliasing error. Furthermore, from the dotted curve in Fig. 4, one can con-
clude that the analytically computed incident fields applied to the excita-
tion surface S produced a null field in the scattered-field region to about
the same accuracy, limited only by FFT aliasing error.

The results for the case of lossy, dispersive materials are shown in
Fig. 5, with n, =1.5-0.5j, n,=10— 1.5/, n3=10, (6, ¢)=(143.8°, 34.3°)
and TM polarization. ng, ngy, and N were the same as in Fig. 4. Layer 1
was modeled by a conducting material and layer 2 by an unmagnetized
plasma as discussed in the Appendix. The dashed curve in Fig. 5 shows the
presence of FFT aliasing error of about 0.6 x 10~% or less in magnitude.
This means that the difference between the FDTD and analytically com-
puted fields in the total-field region was negligible except for FFT aliasing
error. Furthermore, the dotted curve in Fig. 5 shows that the analytically
computed incident fields applied to S produced a null field in the scattered-
field region to about the same accuracy, limited only by FFT aliasing error.

Figure 6 illustrates these observations in a different way. Here, the
magnitude of the FDTD computed electric field component £, on an
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observation plane perpendicular to the Y axis at various time steps is
shown. The layers were lossless to allow clear observation of the multiply
reflected waves in the layered FDTD lattice. The parameters were 7, = 1.0,
n, =20, ny=10, (6, ¢) = (143.8°, 3.04°), n, =33, Ny = 80 and the polari-
zation was TM. In Fig. 6, the incident wave is seen to enter the computa-
tional domain from the upper right corner, undergo multiple reflections in
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the layered FDTD lattice and eventually pass out of the computational
domain. At the same time, the outermost two FDTD layers of the com-
putational domain representing the scattered-field region had negligible
fields at all time steps due to the nearly perfect cancellation of the incident
wave outside the fictitious excitation surface.

4. CONCLUSIONS

In this paper, an incident wave source for FDTD electromagnetic
computations involving layered dispersive media has been described. The
wave source can In principle generate an arbitrary incident wave obeying
the dispersion relations and reflection and transmission relations of the
layered FDTD Ilattice exactly. In practical computation, a small amount of
FFT aliasing error, on the order of 10~ times the peak amplitude of the
incident pulse, i1s usually present in the incident fields generated by the
wave source. This source of error can be reduced by increasing the sample
size for FFT waveform synthesis, but at the expense of increased computer
storage requirement.

APPENDIX

In this Appendix, the electric field updating equations for a plane wave
of the form

E v | [ EX
E,;'.iv./'+1/2,k Eryn
HE,I;.ZJ; k+1/2 _ f{: pJeon At —juk, 4 + jk, 4, — ki 47) (A.1)
X6+ 12 k+1/2 x
H ;,ti/%/z, Jok+1/2 H T
L H’zl,_fi—l/lz/z.j+l/2.k_ | HT |

traveling in an FDTD layer modeled by one of several material models are
derived.

A.l. Conducting Material

Starting from Maxwell’s equation for 0E /0t in a conducting medium
with parameters (¢, o),

O 0H, 0H,
x L A2
5 TOET T (A.2)
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one obtains the FDTD version of Eq. (A.2) by applying the Yee algorithm,

n+1 . n n+1 n
] E i e ES v ik _I_GEx,i+1/2,j,k+Ex,i+1/2,j,k

At 2
_ H Z,-:‘--fl-/lz/z, jripe—H Z,T»}-/%/Z, J=12k H ﬂ}r/f/z, skr1p—H ;,Ti/f/z, Jk—1/2
4, A7
(A.3)
By substituting Eq. (A.1) into Eq (A.3) and simplifying, one obtains
o At o At
Em 1 j(D At — 1 —_
o {< )= (1= )]
1 —ev4y | — e~ 4
=At| ——H'———F+— H” A4
e .
Comparing Egs. (A.4) and (2.2), one obtains
Ep=2¢& (A.5)
o At
=1+—— A6
im 28 ( )
o At
fn.=1-— v (A7)

A.2. Unmagnetized Plasma
Maxwell’s equation for 4D /0t in an unmagnetized plasma charac-
terized by an electric susceptibility y(¢),

2
xu>=%i<1~e‘%WL«m (A8)

U(t) being the unit step function, is

anzéHz_@Hy (A9)
ot Oy oz

where

D (t)y=¢e,E (1) +¢& JOOO W) Ef(t—1)dr (A.10)
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Substituting Eq. (A.8) into Eq.(A.10) and taking the time derivative of
both sides of the latter equation, one obtains

an~-' ?E—*;—i—‘ JOO 2e=V"F (t d A1l
5 =g 5 o . w,e (t—1)dr (A.11)

where an integration by parts has been performed, assuming that E.(¢)
vanishes as ¢ approaches —cc. To evaluate the convolution integral in
Eq. (A.11), the electric field E.(¢) is assumed to have the value E (n) at
time step # and to vary linearly between successively time steps. Thus, for
m=0,1,..,

T—mAdt

E(t—t)=xE(n—m)+ [Ex(n—m— 1)—E (n—m)] pr

for mdir<r<(m+1)4t (A.12)

where t =n 4t and the spatial indices have been omitted for simplicity. This
way, the convolution integral can be evaluated,

~oL ” X a(m+ 1) dr
Jo wye "E(t—1)dt= Y

2 -
wye " TE(1—1)dT
m=0"m at

-
xwidr{aolﬁ\.(n)—l—al Y e_”L"”A’Ex(n—m)}

m=1
(A.13)
where t =n 4t and 2y and «, are given by

l [ —e™d
= | —| —— A.14
%o vcdl{ < v, At ﬂ (A.14)

cosh(v, A4t)—1

=2 < A.l5
u { (v, At)? } ( )

Usin‘g the fact that, for the plane wave of Eq. (A.1), E.(n) is proportional
to ¢4 the summation in Eq. (A.13) can be evaluated. Thus,

Jo cuf,e*"v’Ex([ —TYdr =~ cuiz, At E (n) [oco +——i——} (A.16)

e(jw+v(.) Ar 1
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where ¢=n 4r. Substituting Eq. (A.16) into Eq.(A.11) and making the
finite-difference approximation, one obtains

D,
ot

12 E (n4+1)—E,(n) ! z
vy +eowf,mEx<n+§){ao+z7a)—+zi7‘ti—J

Jo ar _ w?

4t o
zsoEx(n){ T + p2 (efw"’+1)[oco+m}}

(A.17)

where r=(n+3)4t and E,(n+3%) has been approximated by
LHE(n+1)+ E.(n)]. By substituting Eq. (A.17) into the LHS of Eq. (A.9)
and using the Yee finite-difference approximation for the RHS of the latter
equation, one obtains,

2
co 7 (e = 1)+ 24 1) | ot e I}

2 e(jw+vc)dt___1

| — /%4y ] —e~ kT A7
=A{—§-——Hm———ezm—— H’;} (A.18)

¥y z

13

where E (n) has been identified with E7 ,,,, ; , and Eq.(A.1) has been
used. Comparing Egs. (A.18) and (2.2), one obtains

—_— (A.19)

Y= 1 (A.20)
((U A[)z feo At a

fo=1——5—1¢ "+U{oco+em+—vfm—_‘ﬂ (A21)

A.3. Lorentz Material

The electric susceptibility for a Lorentz material is
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where ¢;, w, and J are real constants and y =6 — /w3 — 6% Following the
procedure leading from Eq. (A.10) to Eq. (A.17), one obtains

D, |"+ 12 el A (e, —gy) wldr
i x ek, - O (o4 1 ]
5 €o ,(n){ T 4wl o (9 +1)
. . Y&y (ya,)*
- ><{}roco*(yoco)*—i—e(jww)mul—e(j.w”*)m_l}} (A.23)

where &, and &, are given by

1 [ —e 74
y=—| 1 = ——— A2
g (55 (A2
e? Aty e _D
X, = A2
- { (o 417 } (A-23)

By comparing Egs. (A.23) -and (A.17), one finds that the only difference
between the unmagnetized plasma and the Lorentz material is that the f,,
of Eq. (A.21) for the unmagnetized plasma is replaced by

(eg—eo)wg 41)?

Bn=1~] - (74 +1)
4 Jwi— 02
- - 1;&: (“i )*
X {;ao — (y%)* + e(.fw'*'/y)léif —~ e(j("':}'*l)dt_ J (A.26)

for the Lorentz material.
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