PHYSICAL REVIEW D

VOLUME 31, NUMBER 8

15 APRIL 1985

Properties of a classical charged harmonic oscillator accelerated
through classical electromagnetic zero-point radiation

Daniel C. Cole
Department of Physics, City College of the City University of New York, New York 10031
(Received 17 May 1984)

The behavior of a classical charged harmonic oscillator is analyzed when the system is relativisti-
cally, uniformly accelerated through classical electromagnetic zero-point radiation. Recently, Boyer
considered the same system but with oscillations confined to the plane perpendicular to the direction
of acceleration. The statistical behavior of this accelerated transverse oscillator was found to agree

with the statistical properties of a similar oscillator situated in an inertial frame and bathed by a

thermal electromagnetic spectrum characterized by the Unruh-Davies temperature of T=%#a /2mck.
Here, the restriction to transverse oscillations is removed. The equation of motion describing the
system is simplified by using a coordinate system that is Fermi-Walker transported along the trajec-

tory of the oscillator. The results found for the longitudinal oscillator are analogous to those found

for the transverse oscillator; in general, though, the frequency of the accelerated oscillator is a func-

. tion of the proper acceleration of the system.

I. INTRODUCTION

An observer uniformly accelerating through the vacu-
um of a scalar quantum field was found by Unruh! and
Davies? to observe a Planckian spectrum of the scalar
field characterized by the temperature of T =#a /2wck.
Unfortunately, this beautifully simple relationship was
not found for the correlation functions of the quantized
electromagnetic field.?

Results analogous to those of quantum field theory
were shown to exist within the context of classical theory
for the situations of an observer uniformly accelerating
through classical scalar zero-point radlatlon and through
electromagnetic zero-point radiation.* These results were
obtained by examining the correlation functions of the
zero-point fields along a trajectory in space-time described
by uniform acceleration. Hence, even here, the Planckian
spectrum seen on acceleration in the scalar case did not
carry over to the electromagnetic situation.

Recently, however, Bctyer5 was able to recover Planck’s
spectrum within classical electromagnetism by consider-
ing the behavior of a charged harmonic oscillator uni-
formly accelerated through classical electromagnetic
zero-point radiation. Thus, instead of simply examining
the correlation functions of the electromagnetic field
along a path described by uniform acceleration, the physi-
cal behavior of a uniformly accelerated electromagnetic
‘system was analyzed. A key feature in solving the equa-
tion of motion of the oscillator was to retain all terms in
the full relativistic radiation-reaction expression except
those that were negligible due to the assumed small size of
the oscillator. From the solution of this equation and
from the assumed statistical properties of the zero-point
electromagnetic field, the second-order moments were ob-
tained for the displacement and velocity of the oscillating
particle as seen by an observer uniformly accelerating
with the system. These properties agreed exactly with
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‘those of a similar oscillator in an inertial frame but

bathed in a Planckian classical electromagnetic radiation
spectrum characterized by the Unruh-Davies temperature
of T =#a /2mck.

The present article generalizes the classical analysis by
removing one of the restrictions previously imposed on
the oscillator system. In the model mentioned above,’
physical constraints were assumed to exist which confined
the oscillations of the charged particle to a plane perpen-
dicular to the direction of uniform acceleration. Here,
these constraints are removed. Oscillations may then
occur along any spatial direction. The equation of motion
for longitudinal oscillations, meaning oscillations along
the direction of acceleration, is more complicated than the
transverse case since there are additional terms due to rel-
ativistic effects. In order to ease calculational difficulties,
a coordinate system that is Fermi-Walker transported
along the trajectory of the equilibrium point of the oscilla-
tor is introduced. (This approach should also allow the
study of an oscillator moving through electromagnetic
zero- pomt radiation along other space-time trajectories of

" interest.9)

The equation obtained for the motion of an oscillator
along the direction of acceleration of the system agrees
with the equation governing motion perpendlcular to the
acceleration direction, except for a change in the expres-
sion for the oscillator frequency due to “red-shift effects.”
Indeed, the frequency of the oscillator in the Fermi-
Walker coordinate system will in general be a function of
the proper acceleration of the system, even for a trans-
verse oscillator; only when the distance between “source
and field point” is negligible compared to ¢2/a can one
expect the dependence of the transverse oscillator frequen-
¢y upon the proper acceleration to be removed. (Boyer’s
results apply in this particular limit.) In order to remove
the frequency dependence upon acceleration for a longitu-
dinal oscillator, one must in addition impose the restric-
tion that ¢T,, <<c?/a, where T, is the period of the os-
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cillator. This condition makes negligible the red-shift ef-
fects mentioned previously. However, the limiting case of

¢Tos <<c?/a is not an interesting situation in which to ex-

amine the thermal effects of acceleration, for this condi-
tion implies that the thermal energy associated with the
acceleration is small compared to the zero~point energy of
the oscillator. Thus, T <<c*/a 1mp11es that
kT =#a /2me <<#/27T ~%w. Therefore, in order to
observe the thermal effects of acceleration in the longitu-
dinal oscillations, it appears that one cannot impose this

restriction.

Consequently, the frequency of the longitudinal oscilla-
tor in the accelerating coordinate system will depend upon
the value of the proper acceleration of the system. As .
noted earlier, the same situation exists for the transverse
oscillator when the “small source to field point limit”
does not apply. This frequency dependence upon ac-
celeration presents an additional complication that did not
exist in Boyer’s original transverse oscillator model.
Nevertheless, the essential conclusion reached by Boyer in
regard to the latter model will also hold for the longitudi-
nal and the slightly more general transverse situations
considered here, provided the change in frequency with
acceleration is taken into account. Thus, let w(a) be the
frequency of the oscillator accelerating in classical zero-
point radiation as seen by an observer moving with the
equilibrium point of the oscillator. Let @’ be the frequen-
cy of an oscillator situated in an inertial frame with
Planckian electromagnetic radiation characterized by
T =#a /2wck. If the two frequencies are selected so that
ola)=w', then the statistical behavior of the oscillators,
as observed in their respective coordinate systems, will be
identical.

II. NEUTRAL OSCILLATOR I

IN HYPERBOLIC MOTION

The system that will be considered first is a neutral par-
ticle of rest mass m oscillating at the end of a massless
spring, the equilibrium point of which moves with uni-
form proper acceleration a. Assume that a constant force
f.=ma exists as to provide a uniform acceleration to the
particle if the spring was not present. As described in an
inertial frame I, the equation of motion for the displace-
ment x,(t) of the particle from the equilibrium point of
the spring is given by

M w4 (1)
dTZ - *Sp+ ¢ v -
The quantities ‘Fi, and F§, denote the four-vector forces
in the I, frame associated with the spring and the three-
vector force f, causing the acceleration. The proper time
of the particle is given by 7.

If the four-vector forces Fig, and Fi, were written out
in terms of x% and its denvatlves, they would be fairly_
complicated and highly nonlinear functions of the latter
quantities. Hence, it seems appropriate to attempt to

transform the coordinates so as to obtain a differential _

equation that is more manageable. A coordinate system
that seems a likely choice to make is one that is Fermi-
Walker transported along the path of the equilibrium
point of the spring, for in such a coordinate system, the
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oscillating particle’s behavior is naturally described rela-
tive to the equilibrium position of the spring. It will be
shown that if one chooses this coordinate system, and im-
poses a small-oscillator restriction as measured in an iner-
tial frame instantaneously at rest with respect to the
equilibrium point of the spring, then one obtains a linear
differential equation that can easily be solved.

The method for constructlng a Fermi-Walker transport-
ed coordinate system is described in many standard text-
books on general relativity’ and will simply be summa-
rized here in order to unify notation. Let the uniform ac-
celeration a of the spring’s equilibrium point be directed
along the x axis of the coordinate system. The position of

~ this equilibrium point undergoing relativistic hyperbolic
_motion is described in the system by®

X5 =(cty;Xu(2: )

2 at
C't*;'c_ [1+ [ *
a 4

where it has been assumed for convenience that X, =c2/a
at ¢, =0. By making use of the relationships
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,0,0
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dX, at,,
dty  [1+(at, /c)]
- aﬁd
dt* _ ‘1— dX,,; 2]—1/2
dr, dt, ’

where 7, is the proper time associated with the equilibri-
um point of the spring, X% can be expressed as

ar, 2 a
XE(r,)= — ~Ca—cosh T ,0,0 (3)

2
¢
~— sinh
a

For convenience, the proper time 7, has been chosen to
equal zero when ¢, =0.

Using the above description, a coordinate system can be

- constructed that comsists of four unit four-vectors

[e,(T.)}¥ which are Fermi-Walker transported along the
path of the equilibrium point of the spring.” Coordinates
&" in the accelerated coordinate system can then be de-
fined by c're =£0 and the following conditions:!°

= E e+ X%, (4)
or
1 C2 . ar,
cty = | +— | sinh ,
a c
1 c2 ar, .
X¢= |E'4+ = | cosh , (5)
a c
Vi =§2y Zg =§3 .

Two characteristics of the £ coordinates make them

. particularly useful in describing the accelerating oscillator
system. First, £%/c equals the proper time associated with

the equilibrium point of the spring. Second, differences in
the £, £%, and £ coordinates are equal to the correspond-
ing differences in the x, y, and z coordinates of an inertial
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frame instantaneously at rest with respect to the equilibri-
um point of the spring. Hence, lengths measured in the
latter system are equal to lengths expressed in terms of &,
i=1,2,3. [This can immediately be deduced from Egs. (7)
below.]

The following set of inertial coordinate systems will
now be introduced for future use. Let I, be an inertial

frame moving with speed dx, /dt, =c tanh(a'r, /c) along
the x axis of the I, inertial frame. The I, and I, coor-

dinate systems can be related by the Lorentz transforma-
tion

ar, . ar,
ct , =ct, cosh —Xy sinh R
Te c
’ aTl
x_, =Xy cosh | —ct, sinh <1, (6)
e c

}’,.; =V z,,; =Zy .
From Egs. (6), the I, inertial frame is equivalent to the
I,_, system. Due to the above choice in origins of the
€
I, and I, systems, when the equilibrium point of the
e
spring at proper time 1, is given by

xk=X4(r,)

[(cz/a)smh Iaz

2

} ;(c%/a) cosh [a: ,0,0

then its position in the I, inertial frame is described by
x“, =(0;¢2/a,0,0). Fmally, from Egs. (5) and (6), one im-
medxately obtains

sinh ,

2
= gt E
Cty = [§+ a

a ]
?(T, —7s)

cosh %m -2, ¥

2
gt €
xfi_[§+a

3
}’,.;=§2» Z,Jé=§ .

The relationships given by Eqgs. (5) will now be used to
express Eq. (1) in terms of the &* coordinates of the ac-
. celerated coordinate system. By substituting Eqgs. (5) into
the identity ¢?dm>= —dx{dx.,, it can be shown that
J

d’xg | a% gle 2_'_ on |97 dg! a
ar? = |dr? c| T8 c |t |ar <
d’x) d?g! 2 ar 1
~ |95 _ala A7 | |45 a
dr’ =~ [dr,z & - |t cosh B ,dTe :
2§2 d*x} 2§3 ‘
dr2 7> d'TZ

Equations (10) reexpress the left-hand side of Eq. (1) in
terms of the & coordinates. Rewriting the right-hand
side of Eq. (1) in terms of the accelerated coordinate sys-
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dr. — 1+£i1 _1 dé dE (8)
dr c? ctdr, dr,

With the use of Egs. (5) and (8), all derivatives of x{ with
respect to the proper time 7 of the particle can be ex-
pressed in terms of & and the differentials of it with
respect to 7,. Hence, Eq. (1) can be rewritten in terms of
the £* coordinates. Again, however, a very nonlinear dif-
ferential equation will be obtained.

The assumption will now be made that the amplitude of
the particle’s oscillations about the equilibrium point can
be made arbitrarily small.!! Since one anticipates that the
magnitude of d"£'/dr? will be approximately 4", where
A is the amplitude of oscillation and @ is the resonant fre-
quency of the oscillator, then the restriction of small am-
plitude enables d"£'/d7]} to be made arbitrarily small. It
is under this assumption of small amplitude, where
“small” refers to the amplitude measured by an inertial
frame instantaneously at rest with respect to the accelerat-
ed equilibrium point, that the particle’s equation of
motion will be linearized. (Clearly the situation is far
more complicated than this simple argument since impor-
tant properties may be masked by linearizing inherently
nonlinear differential equations. Fortunately, a harmonic
potential is well suited for enforcing mathematical stabili-
ty at small amplitudes. Consequently, one expects that
the above argument holds in some sort of limit whereby
the smaller the amplitude of oscillation, the closer the
linearized equation approximates the actual one.)

Retaining terms to only first order in the & coordinates
and their derivatives yields

d’f, a§l
~1— s 8’
dr c? ®)
dx? 1
: zéisinh +-¢ cosh a7 ,
dr dr,
dx] 1
ud zig—cosh +csinh |— |, 9)
dr dT,
dx2 dg? dx3 d§3
dr “dr,’ dr —dr ’
a
cosh | =< ] ,
c

(10)

tem involves transforming the four-vector forces in an ap-
propriate manner. Rather than directly making this
transformation from the I, frame to the Fermi-Walker
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transported coordinate system, the transformation will be

made from I, to the inertial frame I, via the inverse of

Eqgs. (6). This allows one to utilize the familiar connec-
tion between four-vector and three-vector forces in order
to make use of the well-known expressions for three-
vector forces in inertial frames. As will be shown, these
expressions for Fi can then be written in terms of the &+
coordinates by choosing 7, to equal 7,.

Using the expression F§ —F ax" /ax and the inverse__

of Eqgs. (6) yields

+F 1, sinh

l
s
C ]
!
ClT
’
c

The four-vector forces F' ‘T‘, can then be written in terms of
e

the three-vector forces fT, via

e

F? -—F° cosh [

I

+F1 cosh (11)

F! —F° sinh [ .

3 3
Fi=F%, F;=F),
e e

de, dp dt, dx,
v Te Te — Tt TC __]_._ f 12
Fe="ar dt,.—df‘ffé dt, ¢’ |’ )

where p’:, is the particle’s four-momentum as measured in
€
the I, frame. The quantity

e

dt,r; d x, d X,
dt,
T,

dr

—-1/2
1
c? dtq_

’
e

(13)

can be expressed in terms of the &* coordinates by usmg
Egs. (7). One obtains
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_since from the transformations of Egs. (6), the parameter

7, can be treated as a continuous variable to automatically
select the inertial frame instantaneously at rest with
respect to the spring’s equilibrium point for all values of
7.. Therefore, setting 7, equal to 7, in Egs. (11) is
equivalent to evaluating the four-vector forces in the in-
stantaneous rest frame of the spring’s equilibrium point.
In this frame, the harmonic restoring force is most simply

- expressed.

With the above condition, Egs. (14) reduce to
dx!,

Te

dt, |,
Te |15 =7,

(d€'/dr,)
(1+a&l/c?)

, =123, (15)

From Egs. (15), (13), and (12), the following results are
obtained to first order in the & coordinates:

dx’, : :
~ , 1=1,2,3 16
at, |,_ T, ! ’ (16
dt,
TE.
il PR | 17
. e

The force f,.gc has been assumed to equal ma, as it is

the force in the instantaneous rest frame of the spring’s
equilibrium point that provides the particle with a relativ-
istic hyperbolic motion in the absence of the spring. The
force f, s, requires more discussion, however, as it is not
so immediately dealt with.

If the equilibrium point of the oscillator is at rest in an
inertial frame, one usually defines a harmonic oscillator
restoring forcg gs fp=—kx for an isotropic oscillator
and fg,=—k'x’, i=1,2,3, for an anisotropic oscillator.
For a nonrelativistic oscillator obeying the equation of
motion

d*x!
m—=
. dt

this yields a simple harmonic motion of frequency
wh=(k{y/m)'/? along each of the three orthogonal spatial
axes. Although one often thinks of a spring obeying
Hooke’s law as constituting the physical example for Eq.
(19), it is well known that the area of applicability of Eq.
(19) extends to all stable systems of small amplitude

=_—kbx! i=1,23, (19)

-governed by forces that are functions of position alone

dx ’ 1
- {—d—i cosh [g-('re —'r;)l
dt , dr, c
Te
1
+ c-}-ié—]sinh [i(re—f;)H—l-, —
c c D
. (14
2 o
o ag1 T _ag -
dtT; dr, D’ dtT; dr, D
where
1 _
D=liisinh i(7'e—'r;) :
c dr, c
. _
+ 1+£2i cosh i(’re —Tp)
[ed c
The inertial reference frame I - in which F is choseri

e

to be evaluated is completely arbltrary since the transfor-
mation of Egs. (11) applies to any value of 7. This arbi-
trariness can be used to simplify the problem by choosing
7%, to equal 7,. This procedure is perfectly well defined,

‘and are reexpressed in terms of the system’s normal coor-

dinates.!? The force —k’x’ is then simply the first term
in a Taylor’s expansion of the forces acting on the particle
about the point of equilibrium. [If one instead uses the
relativistic expression for the momentum of the particle
and writes

21-1/72

axt
dt

=—kix! i=1,23,

(20)
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then the motion no longer follows a simple harmonic
behavior characterized by A sin(wz —B). By restricting
the motion to small amplitudes, however, so that
v/c=wpd /c << 1, then Eq. (20) is again approximately
described by Eq. (19) (Refs. 13 and 14).]

For an oscillator system in which the equilibrium point
is undergoing uniform acceleration, the appropriate gen-
eralization to the force — k’x’ must be deduced. To a cer-
tain degree, this becomes strictly a matter of definition for
what is meant by an “accelerating simple harmonic oscil-
lator.” In Appendices A and B of this article, an explicit
physical model is examined to help motivate the form for
the oscillator’s restoring force that will be used in this sec-
tion of

fho=K8—k'¢, i=1,23. @1

_Since §=x,, —%c?/a in I, [7e=t. in Egs. (7)], then Eq.
(21) may be viewed as apphcable to those systems where
i _sp is 2 function of position and the appropriate condi-

tions of small amplitude, stability, and normal coordinates

are satisfied. The simplifying assumption was made that
I

—(fc —f—K)—g—? cosh

1
=(f, +K)§Ti~l—sinh

2

a2 . 4|98 a
der,z e ey dr, ¢

a i lal ar. | [dgtal.
m dr? —& +a | cosh + dr, sinh

e _ K,

dT,z - m § » (25)

g _ K

sl o & . (26)

Equations (23) and (24) are equivalent and can be rewrit-

ten as
d'z 1 k! 2
gl w

Provided that k!> (a/c)’m, then the £ coordinates follow
simple harmonic motion of the form A‘sin(w’t —pB'), with
angular frequencies given by

DANIEL C. COLE

s |

31

f2 =0 and f§.5p=0 when &2 and £° equal zero. The

constants K and k' are assumed, in general, to be func-
tions of the proper acceleration of the oscillator’s equili-
brium point. When a=0, it will be assumed that K 0
and k' reduces to the value of the constant k) in Eq. (

for an unaccelerated oscillator. The examples in the Ap-
pendices bring these points out more clearly. Finally, the
presence of the nonzero value of K requires that the uni-
form acceleration of the equilibrium point be given by
ma=f,+K instead of ma =f,.

Combining the above expressions with Eq. (18) yields

P~ RStk g, g g |

(22)

The terms — 3°_ k'€(d&/dr,)(1/c) which would
occur in F have been ignored due to the small amplitude

assumptlon Now combining Egs. (1), (10), (11), and (22)
gives the result that

aT,

]+<fC+K k€' sinh | = ] ,  (23)

ar, ar,
_‘}—l-(fc—f‘K—klgl)COSh lT] ,  (24)

r 21172
1 kl a
o'=|—=|— ,
m c
r 12
k2
CO2=-' - s (28)
m
172
3
iz | E
m

The results of this section may cause some puzzlement
over the origin of the change in frequency associated with
the &' coordinate due to the (a /c)? term. The dimension-
less quantity £la /c2, which gave rise to this change in fre-
quency [see the second term in the first bracket on the
left-hand side of Egs. (23) and (24)], is sometimes referred
to as a red-shift effect.”” In Eq. (8'), this term is the
first-order correction to the ratio between the rates of
proper time of the oscillating particle and the equilibrium
point.
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In terms of proper acceleration and three-vector forces,
the following explanation helps to understand the fre-

quency change associated with the £ ! coordinate. In order

for the particle to. remain at a constant distance &' from
the equilibrium point, one can show that its proper ac-

celeration must be given by _

2
1 2
a a [
1+-—§2— ~a—E|= | for £lac— .
(4 a

a'=a/

Under this condition of constant value &', no oscillations
will take place and both the particle and the equilibrium
point will have the same instantaneous rest frame. Since

2
a——é‘l [%

and one requires that ma =f,+K, then k' must equal
m(a/c)? This is precisely the limiting condition of oscil-_
latory motion as predicted by Eq. (27), for only if
k'> m(a /c)* will oscillations occur.'® ‘

ma'=f,+K—k'€'=m

’

III. CHARGED OSCILLATOR
IN HYPERBOLIC MOTION .
The results of the previous section are easily extended
to the case of a particle with rest mass m and charge e.
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As before, the particle may be pictured as oscillating at
the end of a massless spring, the equilibrium point of
which undergoes uniform proper acceleration aX. The
force f ;.esp is again taken to be equal to K8;;—k‘€’. The
constant force f, may now be obtained from a constant
electric field E, in the x direction which satisfies
ma =eEy+K. The major change in the equation of
motion arises from the relativistic radiation reaction
terms due to the charged particle’s motion. In the I,
frame, the Lorentz-Dirac equation which describes the
charged particle’s behavior is'® '

d2ixk dx
m—— =Pl + 2 FW— 4T, 29) .
where
1'*#__2.6_2 d’xk 1 dix} d%x,, |dxt o)
3¢t | dr? | drr df jdr |

Fip is again the four-force associated with the spring,

and F%¥ is the electromagnetic field tensor due to the

__ “presence of the electric field E,,.

- Most of the results from the previous section can be
used to evaluate the new terms that have been introduced
in the equation of motion. Using Egs. (8’) and (10) and
again invoking the small amplitude approximation yields

|
d’xy g ar, d%! a 3 22 or
~ inh |[— 2 L g% a” h e
i e T PP et e T o] [T [T )
d3x}‘ d3§l aTe dz 1 a ' a 3 a2 ar
=~ h|— 2 “ = a_ . e
dr  dr} cos + drlc E | [+ qsinh | | o)
dsxi d3§2 d3xi d3§3 . ToonI
a7 drt’ dr} drt e
From Egs. (10),
dzxA dzx 21 2 |
* ——L}"—za2+2a d_éz__gl a o
dr* dr? dr2 © |¢c
Substituting Egs. (9), (31), and (32) into Eq. (30) results in the expressions
.
2 02 | d3gt . ar, 42! a a 22 ar;
0_2¢e" 3 are ) a e a2
=3 c? ‘ 7,3 sinh + dr,? ¢ 4 ol B e cosh .
L 2 d’¢’ 1|4 dél : e ar,
= & ula W lame are
o2 [a +2a{d1'32 & . dr sin +¢ cosh |~ |
2 |dE |a 2d§1 . ar,
=33 T | si , -
3 ¢ dTe c d’re c
L 2e |2 [a] ag o T
r 33 dr’ < dr, cos ’ 34)
. 2 .
.2 32 d3§x a ds,
'z_._ - ) =2,3
R Pt "} i 35)

Finally, the term (e/c)#%"(dx,,/dT) can be expressed in the £&* coordinates by using the explicit expression for &' w
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(Ref. 19) and Eqgs. (9). As should be expected, the same results are obtained as in the previous section with f, replaced by
eEy, since I, and I, see the same electric field E, along the x direction.

After substituting the above quantities into the Lorentz-Dirac equation and observing that the p=0 and p=1 equa-
tions again yield the same result to first order in £’, one obtains the following equations of motion:

. i 2
d2 i _ N2pi d3 i a iﬁ,
i = @VEST _g—dfj e | an | i=123, (36)

where T'=2e2/¢%m and o' is again given by Eq. (28).

IV. CHARGED OSCILLATOR UNIFORMLY ACCELERATED IN CLASSICAL ZERO-POINT RADIATION

The situation considered next is the oscillating charged particle of Sec. III, again undergoing relativistic hyperbolic
motion, but now in the presence of what has been termed classical zero-point electromagnetic radiation.?’ The Lorentz-
Dirac equation is now altered simply by including the zero-point radiation fields E}?(x,,#, ) and BP(x,,z, ) in addition to
the By field in the electromagnetic field tensor #%". Loosely phrased, these additional fields now act as a driving force
to the simple harmonic oscillator of Sec. I with damping terms of Sec. II. Hence, an equilibrium behavior of the
particle’s motion is obtained, since the energy radiated by the particle’s oscillations must be supplied by the work done by
the zero-point fields in maintaining the particle’s oscillations.

Using Egs. (9) and the appropriate expression for F4" yields

[ ! ar, ar 2 3
(EX+Eq) 45 osh |27 +csinh |— _f_E:l;-—di_‘_E:!z’ig_ ’
dr, c c dt, dr,
1 a 5 s
(EX+Ey) E‘Sinh T +c cosh [a"e +B:’Z—(‘1‘§——-B:5£§‘ ,
e dxey e dr, c c dr, dr,
T dr e 37
c dr ¢ dg ar, ar, dE! ar ar aed
EY sinh [—= |+ccosh |—= | | —BZ —-—g—cosh e | tesinh |27 || 4B 95
d’re C ¢ d,,-e ¢ d’l‘,
1 a ar, 1 a a )
i gisinh Te +ccosh | —< +B% ég—cosh Te tesinh Te _B® dé '
dr, c ¢ dr, ¢ c dr,
—

Additional complicated terms due to the zero-point fields
now appear in the equation of motion of the charged par-
ticle. Solving the resulting differential equations without
imposing certain limits would indeed be very difficult.
However, the small oscillator limit cannot so arbitrarily
be imposed as it was in the previous cases considered.
Now the fluctuating zero-point fields will be the deter-
mining factor in the size of the amplitude of oscillation.
Hence, even the use of Egs. (9) in obtaining Eqgs. (37) must
be reexamined.

The following reasoning is intended to provide some ra-
tionale for the approximations that will be made subse-

der in these quantities. Consequently, any single power of
& or its derivatives and any single power of the fields EP
and BZ will be treated as first-order quantities in E?(w’)
and B?™(w'). Terms of the form (e/c)BPdE/d7,,
(e/c)EPdE/dT,, —kEdE/dT,, and eEy(dE/dr NdE/
dr,)(1/c?) will be considered of second order in E*(«)
and B?(w’). The quantity (e/c)F4"(dx,,/dT) can then
be linearized; the earlier linearization steps followed in
Secs. I and II will then also hold.?!

Three equations of motion similar to Eq. (36) are now
obtained which include the effects of the zero-point fields,

quently. The amplitude of the frequency component of d% ; 3¢ a 2 dE

the zero-point fields near the resonant frequency of the E_%=—(0’ VE+T ;1‘_5?— ?] gf_

oscillator is anticipated to be the main contributing factor ¢ ¢ ¢

to the amplitude of the oscillator. Let the former quanti- e .,

ties be denoted by E*(o') and B*(w’). If the latter are T E mil6T.), i=1,2,3, (38)
sufficiently small enough, then one would expect that &'

and any derivative d"&'/d 7} would roughly be of first or-  where
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:pl(g’fe)=E:gc(§,7e) ’
. aTe
EZ ZP,(E,1.)=cosh |E*y (€,7.)—sinh l B,z(é','re R
(39)
e aTe
E§f3(§,7'e)=cosh ] P(&,7,)+sinh BZE(E,7.) .

The quantities E;?; are the electric fields measured in the
inertial frame I, along the three orthogonal coordinate

space axes. The quantities (£,7,) in the arguments of the
fields represent the space-time position of the particle at
which to evaluate the fields. Using a dipole approxima-

tion for the fields, the arguments £ are then set equal to

zero.

Hence, when the small oscillator assumption is made,
all three directions of motion are described by the dif-
ferential equation expressed by Eq. (38). This turns out to
be true despite the additional complicating terms that
must be taken into account for oscillations occurring in a
direction parallel to that of the uniform acceleration a.

The above linear stochastic differential equations may
now be solved in order to determine the statistical proper-
ties imposed upon the oscillating particle by the fluctuat-
ing zero-point fields. Fortunately, this work has already
been carried out in Ref. 5, where the behavior of the parti-
cle was investigated under the restriction that oscillations
were confined to the directions perpendicular to a. By
comparing Eq. (14) of the latter article to Eq. (38) of the
present article, it can immediately be seen that they are of
the same form when the dipole approximation in the
fields is made. The only difference is that in the present
paper, @' is recognized to be, in general, a function of a,

the uniform acceleration of the oscillator’s equilibrium

point. Of course, this difference in no way effects the
method of solution. Hence, the conclusion of Ref. 5 can
be immediately applied here, with a slight change in mter-
pretation.

V. CONCLUSION o

The results of the previous section lead to the following
conclusion. Consider an oscillating charged particle uni-
formly accelerated through classical electromagnetic

zero-point radiation. Let w'(a), for i=1,2,3, be the natu-

ral frequency of the motion of the particle along each of
the spatial axes of the Fermi-Walker transported coordi-

nate system introduced in Sec. II. Now consider a second .

oscillating charged particle at rest in an inertial frame and
bathed in classical electromagnetic zero-point radiation
plus Planckian electromagnetic radiation. Let the latter
spectrum be characterized by the Unruh-Davies tempera-
ture of T =%a/2wck. Let this oscillator have a natural
frequency o"=w'(a) along each of the three spatial axes
in the inertial frame. One can then conclude that the sta-
tistical properties for these two oscillators will be identi-
cal, as observed in their respective coordinate systems.

-positions &+=(0,
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APPENDIX A: MODEL OF A TRANSVERSE
ACCELERATED OSCILLATOR

. The following simple model is presented in order to
motivate the form assumed for the spring three-vector
force given by Eq. (21). A transverse oscillator model is
considered here; the following section considers the analo-
gous longitudinal oscillator model. From these examples,
it should be apparent how one could construct more gen-
eral stationary charge distributions in the Fermi-Walker
coordinate system, with symmetry axes along the %, ¥,
and Z directions and that result in the validity of Eq. (21)
(21) in the limit of small amplitude 4.

In order to create a force which depends linearly upon
the oscillating particle’s displacement from equilibrium,
two charged particles will be placed and held fixed in the
+1,0) of the accelerating coordinate sys-
tem. Consequently, they will possess the same proper ac-
celeration a as does the equilibrium point £=(0,0,0). As-
sume that these two particles each have a charge g of the
same sign as the charge e of the oscillating particle. Let
the latter particle be constrained so that its position is
described by £=(0,£X7,),0). By restricting the ampli-
tude of oscillation A4 to be much smaller than the length 1,
the force of the outer two charges on the center particle
can be expanded in a Taylor series in €2 For 4/l «<1,
this force is adequately approxxmated by retaining only
the first-order term in & thereby yielding the desired
model for a simple harmonic oscillator restoring force.
Calculating the value of the proportionality constant k2
will then determine the dependence of w?=(k2?/m)/?
upon the proper acceleration of the oscillator.

If ones does the above calculation for an unaccelerated
oscillator, it is found that k% =4eq/I*. Proceeding to the
situation of an accelerated system, one must use the stan-
dard expressxon for the retarded electric field of a point
charge given by*?

i-pB
7’2( 1 "‘B'ﬁ):;RZ ret

Ax[(@—B)XB]
(1—B4aPR

E=¢q

L4

C

(40)

ret
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In order to conform with the analysis of Sec. II, the force
on the oscillating particle should be evaluated along the y
axis of an inertial frame I, , instantaneously at rest with
respect to the equilibrium point of the oscillator. From
Eq. (40), the quantity of interest is

qny Rnx[ﬁ’

E,=|—2 ., (41
Y27 | RY1—Bn, ) @0

ret—

[(1_32)+

where the * signs indicate the field due to the charge at
E2=+I.

In the limit of 4/l <<, Frly=e(Ey++Ey_) can be
expanded in terms of £2 to yield

dE
F, (E)m2e—2F | £=—_f%, (42)
4 § dé—Z £=0

where the symmetry of the model has been used to set
(Ey . +E,_)|g=0=0and

dE, , dE, _
d&* |gmo dE* ls—0

Through rather len§thy calculations, one can now obtain
an expression for k. This involves calculating the retard-

]
2 ] 172
at,+/c
[14-(at,+/c)}]V 2’

a(lFé)
2c

Uxé)
— . 14

L=

Ryy=—ctry, Bri=

c%/a —(c*/a)[1+(at,1 /c)*]'7?
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a/c

ed time f,, associated with the charge at £=(0,/,0), ex-
pressing all quantities in the expression for E, , in terms
of t,,, expanding t,, to first order in £2 and finally
propagating those first-order terms to Eq. (42).

Clearly, despite the simplicity of this transverse ac-
celerated oscillator model, k2 will be an extremely compli-
cated function of the proper acceleration a. As one might
expect, only in a particular limit, namely, where ! <<c?/a,
will k2 reduce to the value k2 in Eq. (19). Of course, in
most cases of interest, this limit is easily satisfied. As dis-
cussed in the Introduction, however, the thermal effects of
an oscillator associated with acceleration are only expect-
ed to be observable when ¢T ' is not small compared with
c2/a. Hence, in order to see thermal effects and yet have
k~k}, then I <<c?/a and cTo>c?/a must both be
satisfied. (As indicated elsewhere, the conclusion of this
article does not depend upon satisfying the condition
k?=k2. The present discussion simply examines from a
classical point of view some of the subtleties involved
with the dependence of k2 upon a.)

With regard to the present model, one way to satisfy
the above conditions is by letting ¢—0 as /-0 in such a
way that 4qge /] 3 remains of constant value k3. Of course,
£ <<l must remain satisfied and k3 chosen such that
cT Zcz/a. Using the following relationships,

43)
FI+E

Rypt ==

+ Rj-_ ’ Bri‘

7

and following the operations mentioned earlier, one can
then show that

el

for al /c? << 1.

APPENDIX B: MODEL OF A LONGITUDINAL
ACCELERATED OSCILLATOR

A simple model for longitudinal oscillations, analogous
to the example in Appendix A, will be briefly examined
here. Let two particles of charge g be held fixed at the
positions &4+ =(+1,0,0) of the accelerating coordinate sys-
tem. Consequently, they will possess proper accelerations
ai=a/(1xla/c?). Assume that the oscillating particle
of charge e is constrained so its motion is described by
£=(£Y7,),0,0)). In conformity with the analysis of Sec.

= [1+(atri/C)2]3/2 s Myt =

R+

[
II, the force on the oscillating particle should be evaluated
in the instantaneous rest frame of the equilibrium point.

For an unaccelerated system, k§=4ge/I>. In the case
where a540, one must again use Eq. (40) in order to ob-
tain the force on the oscillating particle. One obtains

1_Br+ 1 7 1+Br—~
1+Br+ R,_,_z 1_“Br_

1
R, ?

(44)

2

Fr,x=eq {'—

where the * signs again indicate the respective quantities
associated with the source particles at £!=+/. In order to
evaluate Eq. (44), the following expressions are needed:

1

c2

ay

t :F“""—““‘l -
"7 28+ c2/a)

2 2
_ gt

(45)
ai.t,i/c .
[14+(ast,s /e

Riyp=—~ctyy, Brs=



Substituting Eqgs. (45) into Eq. (44) and expanding F, , to

first order in &' results in an expression of the form
If I<c?/a and

F,.=K— k§ For a;&O K=£0.
4-qe/l3 ko, then
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