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We analyze the proposal that gravity may originate from a van der Waals type of residual force between
particles due to the vacuum electromagnetic zero-point field. Starting from the Casimir-Polder integral, we
show that the proposed approach can be analyzed directly, without recourse to approximations previously
made. We conclude that this approach to Newtonian gravity does not work, at least not with this particular
starting point. Only by imposing different or additional physical constraints, or by treating the underlying
dynamics differently than what are embodied in the inherently subrelativistic Casimir-Polder integral, can one
expect to escape this conclusion.
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The present article analyzes in some detail a specific pro-
posal on the physical origin of gravitation@1#. Most physi-
cists regard gravitation as a very basic phenomenon, on par
with the electromagnetic, weak, and strong interactions.
However, trying to cast all four of these interactions under
one unified theoretical description has proved to be enor-
mously difficult. This difficulty contributed to Sakharov’s
proposal@2# that the gravitational interaction is not a funda-
mental interaction at all, but rather that it results from a
‘‘change in the action of quantum fluctuations of the vacuum
if space is curved.’’ In turn, Sakharov’s idea helped to mo-
tivate Puthoff’s proposal in 1989 that ‘‘ . . . gravity is a form
of long-range van der Waals force associated with particle
Zitterbewegungresponse to the ZP~zero point! fluctuations
of the electromagnetic field’’@3#.

Several possible starting points were mentioned for the
gravity related work in Ref.@1#, including ~i! Boyer’s sto-
chastic electrodynamics~SED! calculation of the van der
Waals force between two classical, nonrelativistic, electric
dipole harmonic oscillators@4#, ~ii ! Renne’s related nonrela-
tivistic quantum electrodynamic~QED! calculation for a
quantum harmonic-oscillator model@5#, and~iii ! fourth-order
perturbation theory in QED leading to the~subrelativistic!
Casimir-Polder integral@6#. All three of these approaches
were discussed and related to each other in Ref.@4#. Since
Puthoff explicitly referred to the first term in the Casimir-
Polder integral@7#, let us begin with this expression@6#:
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Here, U(R) is the Casimir-Polder potential between two

neutral, polarizable particles,R is the distance between the
particles, andv0 is the resonant frequency associated with
the particles when they are treated as harmonic oscillators.
The polarizabilitya is then given bye2/(mv0

2).
A number of approximations were made to Eq.~1! in Ref.

@1#. Only the first term in brackets in Eq.~1! was considered
and v050 was substituted into the integrand, based on the
argument of a small effective resonant frequency. The upper
limit of ` was replaced by an upper cutoff limituc5vc /c.
Some averaging arguments were then made that led to a 1/R
effective potential between particles. Later, in response@8# to
a criticism by Carlip@9# on the calculational procedure of the
averaging steps, Puthoff gave some additional arguments and
different reasoning to still yield this 1/R effective potential,
now emphasizing that there should be physical reasons for
imposing cutoffs in the integration that enable this 1/R form
to be obtained.

We wish to make two key points here. First, one cannot
simply extract the first term in Eq.~1!, as all of the terms
contribute on a roughly equal footing in the large distance
regime. Second, Eq.~1! can be fully evaluated, as will be
done here, and compared with any proposed approximations
to the full integral. Unfortunately, as will be seen, the ap-
proximations in Refs.@1# and @8# do not hold, at least not
without introducing additional assumptions that imply sig-
nificantly different physical effects not embodied within the
inherently subrelativistic full Casimir-Polder integral.

To begin, we make the substitution ofw5uR in Eq. ~1! to
obtain
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Thus,U(R) has a functional form of 1/R3 times an integral
that depends onv0R/c. A second argument to this integral
could also be included@i.e., I (b,wc)# if we replace the upper
integration limit of infinity by a cutoff of wc5ucR
5vcR/c, such as might be imposed if the ZP spectrum was
thought to be cutoff at sufficiently large frequencies@10#.
Without imposing this cutoff, however, then it is easy to see
from the above that if a 1/R potential is to emerge for the
form of U(R), under whatever limiting conditions one im-
poses~e.g., largeR, smallv0, etc.!, thenI (b) must result in
a b12 dependence.

However, a full evaluation of Eq.~3! does not reveal any
such dependency. As discussed in Ref.@11#, each term in Eq.
~3! can be analytically evaluated. Indeed, Fig. 1 in Ref.@11#
shows a plot of ln@I(b)# versus ln(b), revealing thatI (b) is
bounded from above by two curves thatI (b) asymptotically
approaches at large and small values ofb. For large b
5v0R/c, the bounding curve is the retarded van der Waals
expression ofI r(b)[23/4b24, yielding an overall 1/R7 de-
pendence forU(R) in this regime. At smallb, I (b) is
bounded by the unretarded van der Waals expression of
I ur(b)[3p/4b23, yielding an overall 1/R6 dependence for
U(R) in this regime. At no point either between these ex-

tremes, or at these extremes, is there any behavior that re-
motely approaches ab12 dependence that would be required
to yield a net 1/R dependence forU(R).

Reference@11# contains a detailed analysis on howI r(b)
and I ur(b) can be extracted from Eq.~3!. Moreover, the
question is examined on what happens if an upper cutoff of
wc5vcR/c is imposed in the integration in Eq.~3!. As
shown there, if min(2v0,5c/R)&vc , wherev0 is the reso-
nant frequency of the oscillator system, then the integrations
in Eqs. ~1! or ~3! will be barely affected. Since proposed
upper frequency limits for the ZP spectrum are far, far larger
than this restriction@10#, then we must conclude that impos-
ing a realistic upper frequency cutoff in the integration in Eq.
~1! still yields that a Newtonian potential does not arise from
the Casimir-Polder integral. An energy based argument dis-
cussed in Ref.@11# helps to support this point. It displays the
remarkable implausibility of the low frequencies van der
Waals force approach to Newtonian gravity formulated in
Ref. @8# in response to the objections of Ref.@9#. In conclu-
sion, barring the introduction of additional physical assump-
tions into the analysis in Refs.@1# and@8#, the specific argu-
ment presented there involving an average force induced by
ZP fields, will not yield a Newtonian gravitational force sig-
nature.
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I. OVERVIEW OF MATERIAL

The material contained here is intended to supplement and support the information reported in our article, “On
a Stochastic Non-relativistic Approach to Gravity as Originating from Vacuum Zero-Point Field van der Waals
Forces,” to be published in Phys. Rev. A. The present material can be obtained from the EPAPS homepage
(http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. The footnotes and reference
numbers in this supplementary section refer to references listed at the end of this material, rather than to the reference
numbers in the main article.
The information provided here is broken up into three subsequent parts. Section II contains additional background

on work related to Sakharov’s proposal, on stochastic electrodynamics, and on related work to Puthoff’s gravity
proposal. Section III then turns to a detailed analysis on how Ir (b) and Iur (b) can be extracted from I (b) in Eq.
(3). We are not aware of such calculations being available elsewhere on the connection between the full, retarded,
and unretarded van der Waals expressions, so this material should be of general interest for researchers involved with
van der Waals and Casimir interaction calculations. Moreover, the question is examined on what happens if an
upper cut-off of wc = ωcR/c is imposed in the integration in Eq. (3). Section IV then contains a discussion on the
energy aspects associated with variations of the proposal in Ref. [1]. This analysis provides an intuitively compelling
argument as to the unlikelihood of the gravitational attraction being a long range van der Waals type force originating
in the very low frequencies of the ZP radiation spectrum. Finally, Sec. V provides some concluding comments.

II. BACKGROUND INFORMATION ON RELATED GRAVITATIONAL APPROACHES

Modern views on gravitation are based primarily on Einstein’s theory of general relativity. This theory describes
the properties of space and time as being altered in the vicinity of massive bodies. Roughly stated, space near a
massive body is “bent” in such a way that the shortest distance between two points becomes a curve, rather than a
straight line in Euclidean space. One example often given in semipopular writings is the path of a ray of light when
passing near a massive body like the Sun. As measured in Euclidean space, the path deviates from that of a straight
line. The larger the massive body and the closer the path of the light ray to the body, the greater the deviation.
Most physicists regard gravitation as a very basic phenomenon, on par with the electromagnetic, weak, and strong

interactions. Physicists, starting with Einstein, have tried for years to describe the main interactions in nature
in terms of a single, coherent framework. However, trying to cast all four of these interactions under one unified
theoretical description has proved to be enormously difficult. Indeed, the well-known difficulties in expressing ordinary
gravitational theory within a properly quantized framework have occasionally lead to the view that gravitation is
merely an effective field or an effective interaction, i.e., essentially phenomenological and thereby susceptible of a
more fundamental explanation in terms of other fields. Consequently, several attempts have been launched in this
direction [2]- [4]. We refer here in particular to that of Sakharov [5]- [7] and Zel’dovich [8]. Their approach takes a
much more radical point of view to gravitation than is conventionally held by most scientists.
As expressed by Sakharov [5], gravitation is not a fundamental interaction at all, but rather a by-product of

vacuum quantum fluctuations: “The presence of the (Einstein) action ... leads to a metrical elasticity of space, i.e.,
to generalized forces which oppose the curving of space ... We consider the hypothesis which identifies the (Einstein)
action ... with the change in the action of quantum fluctuations of the vacuum if space is curved” (our italics). This
came as a natural consequence of trying to express the cosmological constant, Λ, in terms of vacuum fluctuations [8].
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This proposal of Sakharov and Zel’dovich elicited considerable interest and received a fair bit of attention, e.g.,
by Terasawa [9] and collaborators, Hasslacher and Mottola [10], Amati and Veneziano [11], Zee [12], Adler [13], and
Yoshimoto [14]. Here we give a rough, qualitative description of the general ideas behind this approach to prepare
for the more specific theory that will subsequently be discussed.
A qualitative understanding can be obtained by thinking in terms of bending, by a small amount, a strip of metal

with elastic properties. Work must of course be done on this strip to accomplish this bending. This work is stored
as potential energy in the strip. When pressure is removed on the strip, the strip will flex back, on its own, and
assume its original shape. The elastic potential energy stored in the strip enables this behavior to occur.
The theory by Sakharov and Zel’dovich roughly describes the “bending” of space-time in general relativity in terms

of a similar mechanism. When massive bodies are nearby, a sort of “pressure” results that bends space and time;
upon removing the bodies, then space-time assumes it’s original properties. The more “bending” that occurs, the
more energy that is required to be stored in the distorted space-time. Their theory relates gravity to quantum fields
by associating the stored energy involved in the bending of space-time to the energy associated with the quantum
fields that describe material particles. The presence of a massive body changes the amount of stored energy in
these fields, which in turn results in a greater distortion of space-time. Their proposed theory involves an expression
that relates G, the gravitational constant, to the speed of light, c, Planck’s constant, ~, and a cutoff length in the
integration over zero-point (ZP) field energies. Einstein’s equations can be derived with this approach, as well as
what are interpreted as higher order corrections to these equations. In this sense, then, gravitation becomes derivable
from particle physics. For specific details, Refs. [5]- [8], should be consulted.
The theory we will now turn to and address in detail was motivated in part by this theory by Sakharov and

Zel’dovich. This approach [1] uses the techniques of stochastic electrodynamics (SED). SED is classical electrody-
namics with the assumption of the existence of a classical random electromagnetic background field that is homoge-
neous and isotropic and looks the same from all inertial Lorentz frames [15], [16]. The only classical background with
such properties is one whose energy density spectrum displays a dependence of the form

ρ (ω) dω =
~ω3

2π2c3
dω . (A1)

This spectrum is exactly the same energy density spectrum found for the vacuum electromagnetic ZP field in quantum
theory. Here, however, ~ enters more as the parameter that fixes the scale of such random electromagnetic background
than as a constant in some way connected with quantization, as is traditional in quantum theory.
Motivated by Sakharov’s earlier work [5]- [7] relating ZP fields to gravity, and knowing that Casimir and van der

Waals forces are closely tied to electromagnetic ZP fields, in 1989 Puthoff [1] proposed that “... gravity is a form
of long-range van der Waals force associated with particle Zitterbewegung response to the ZP fluctuations of the
electromagnetic field” [17]. According to his analysis, a Newtonian-like 1/R2 force arises between distant particles
as a residual force due to point-particle dipole interactions with ZP radiation. We show here that this specific
attempt to deduce Newton’s formula for the gravitational interaction that uses SED in a nonrelativistic approximation,
unfortunately, does not work. The approach is interesting and, as noted in Ref. [1], has some connection to Sakharov’s
proposed idea on the origin of gravitation [5]- [7]. Through the years, several physicists have been attempting other
closely related approaches that introduce additional physical considerations to examine whether the general idea and
final result might yet hold. Along this vein we would like to mention a recent work by Puthoff [18] that reviews
the proposal [19], [20] that gravity may be interpreted as an effect induced by massive bodies on the polarizability
of the vacuum medium. At this point, however, this and other speculative developments are still preliminary. To
clarify the present situation, we have written the present article to show that unless other physical assumptions are
introduced, the original idea in Ref. [1] will not yield a Newtonian gravitational attractive force [21]. Our concerns
described here are addressed to the last part of the paper, which is where this inverse square force is derived. We
note, however, that other parts of the article we found stimulating. They promote further thought on relating ZP
energy, Zitterbewegung behavior, and gravity. Strictly speaking, our argument disproves only the subrelativistic van
der Waals forces approach to gravity. A possible relativistic van der Waals forces approach would not be strictly
excluded, though its likelihood of success, given the present developments, does not seem promising. Our argument
in no way should be construed as an argument against all vacuum or ZP field connections to gravity.

III. ANALYTIC AND NUMERICAL ANALYSIS OF CASIMIR-POLDER POTENTIAL

To facilitate reading, below we first repeat the first three equations in the main part of our article, labeling them
as Eqs. (1), (2), and (3), as in the article. Subsequent equations are then continued as Eqs. (A2), (A3), etc.:
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As mentioned in the main article, only the first term in brackets in Eq. (1) was considered [22] in Ref. [1]. However,
each term in Eq. (3) can be analytically evaluated in terms of the sine and cosine integrals. For example, from Ref.
[23], one obtains that

∞Z
0

e−µwdw
(w2 + b2)

2 =
1

2 b3
{ci(bµ) sin(bµ)− si(bµ) cos(bµ)− bµ [ci(bµ) cos(bµ) + si(bµ) sin(bµ)]} , (A2)

which enables the last term in Eq. (3) (i.e., the 1/w4 term) to readily be evaluated (µ = 2). The other terms in Eq.
(3) can then be found by repeated differentiation of Eq. (A2) with respect to µ.
Figure 1 shows a plot of ln [I(b)] versus ln(b), while Fig. 2 shows a plot of I(b) versus b. As can be seen, I (b)

is bounded from above by two curves that I(b) asymptotically approaches at large and small values of b. For large
b = ω0R/c, the bounding curve is the retarded van der Waals expression of

Ir (b) ≡ 23
4
b−4 , (A3)

yielding an overall 1/R7 dependence for U(R) in this regime. At small b, I (b) is bounded by the unretarded van der
Waals expression of

Iur (b) ≡ 3π
4
b−3 , (A4)

yielding an overall 1/R6 dependence for U(R) in this regime. At no point either between these extremes, or at these
extremes, is there any behavior that remotely approaches a b+2 dependence that would be required to yield a net 1/R
dependence for U(R).
We now turn to briefly outlining how Eqs. (A3) and (A4) can be extracted from Eq. (3), as this will have bearing

on some of the approximations and reasoning described in Puthoff’s response [24] to Carlip [25]. Moreover, since
we are not aware of such calculations being available elsewhere on the connection between the full, retarded, and
unretarded van der Waals expressions, then perhaps this material will be of general interest for researchers involved
with van der Waals and Casimir interaction calculations.
Of course, one could simply evaluate Eq. (3) using Ref. [23] and the reasoning described earlier, then take the

asymptotic extremes of small b and large b in the resulting expression, but the details of this procedure are long and
not very revealing. Hence, we will proceed in a simpler, although more approximate manner, that provides more
physical insight. In particular, the following reasoning will provide deeper understanding into the physical argument
given by Boyer in Ref. [26] that the major contribution to the long range attractive force between polarizable particles
is due to the low frequency contribution of the integral in Eq. (1). Understanding this point more deeply is important
as this argument was cited by Puthoff in his response [24] to Carlip [25].
The factor of

f ≡ 1/ ¡w2 + b2¢2 (A5)

in Eq. (3) is clearly what dictates the formation of the asymptotic regimes for I(b), as the only place b occurs in
the integrand in Eq. (3) is within f . The shape of f is roughly described by the following: at w = 0, f equals its
maximum of b−4; f decreases as w increases in value, equaling 1/4 and 1/25 of its peak value at w = b and w = 2b,
respectively [see Figs. 3(c) and 3(d)]. For this reason, the largest contribution to the integral in Eq. (3) occurs in the
region approximately given by 0 ≤ w . 2b when b . 1 [see Fig. 3(a)]. For large b, f is no longer the key factor limiting
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the size of the integrand; instead, the damping due to the factor exp(−2w) dictates the size of the integrand. Indeed,
as can be seen from Figs. 3(b) and 3(d), for 1 ¿ b, f is essentially constant over the region where the integrand is
large.
Consequently, for large b,
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yielding Ir(b). A key point here is that each term in the polynomial part of the integrand contributes on a roughly
equal basis to the final result, as indicated above. Thus, it is important to note here that for the large R range
behavior, one cannot simply restrict attention to the first term in Eq. (3), which corresponds to the same first term
in Eq. (1).
To obtain the unretarded regime described by b¿ 1, one simply needs to note that now the integrand in Eq. (3) is

essentially determined only by the factor of f [see Figs. 3(a) and 3(c)]. Since this factor is then only large when 0 ≤
w¿ 1, the rest of the integrand can be approximated by its value at w = 0; i.e., ¡w4 + 2w3 + 5w2 + 6w + 3¢ e−2w ≈ 3.
Hence, for b¿ 1:

I (b) ≈ 3
∞Z
0

dw
1

(w2 + b2)2
=
3π

4b3
, (A7)

yielding Iur (b).
Now let us return to the question of what happens if an upper cut-off of wc ≡ ωcR/c is imposed in the integration

in Eq. (3). As can be seen from Figs. 3(a) and 3(b), if wc is approximately equal to or larger than about 2b = 2ω0R/c
for b . 1, or, indeed, if wc is larger than about 5 for any value of b [Figs. 3(a) and 3(b)], then the integration over
w in Eq. (3) will contain the largest contribution from the integrand and the character of the plot in Fig. 1 will be
hardly affected at all. We checked this assertion via numerical calculations and found that if wc is made equal to 2b
instead of ∞, then the calculation of the integral in Eq. (3) is decreased by a maximum of about 4% at small values
of b and monotonically decreases to 0% at large values of b. The curve ln I(b) in Fig. 1 would then be visibly changed
only at small values of b. Thus, if min

¡
2ω0,

5c
R

¢
. ωc, where ω0 is the resonant frequency of the oscillator system,

then the integration in Eq. (3) will be barely affected.

IV. ZP RADIATION AND THE 1/R GRAVITATIONAL POTENTIAL - PLAUSIBILITY
CONSIDERATIONS

In Ref. [24], Puthoff added the further argument that to obtain a net 1/R potential dependence, an upper effective
frequency limit of ωi needed to be imposed in the integration, where ωi < ω0, followed by the condition that the limit
of ω0 → 0 was to be taken. In his justification for this reasoning, he used an argument by Boyer in Ref. [26] that
only the low frequency contribution of the interaction between polarizable particles should be effective in yielding
the long range attractive force due to correlated motion. Figure 3(b) shows that at sufficiently large distances, the
significant frequency contributions in the Casimir-Polder integration lie in the range of 0 ≤ ω . 5c/R (i.e., for large
distances, 5c/R is much smaller than 2ω0). Thus, for large distances, the significant frequency contributions to the
integration are indeed the very low frequency regime. However, applying this reasoning leads to the retarded van der
Waals expression in Eq. (A3) with its 1/R7 dependence, rather than to a 1/R dependence.
Moreover, there is an additional point of concern here. For macroscopic distances and in particular for astronomical

distances where Newton’s law has been shown to work quite well, the energies available in the relevant part of the
ZP field, i.e., in the low frequency limit for 0 ≤ ω ≤ 5c/R, would be incredibly small. Integrating the spectrum¡
~ω3

¢
/
¡
2π2c3

¢
over that range and applying the result to the Earth-Moon distance (R ∼= 3.844× 1010 cm) we obtain

that in a cubic volume V0 of side 2R that is able to enclose the Earth-Moon orbit inside, the amount of energy in
that whole volume (V0 ∼= 4.544× 1032 cm3) would only be on the order of 0.3× 10−13 eV! However, according to Ref.
[24], only this tiny part of the ZP field would be responsible for the enormous Newtonian gravity force required to
attract the Moon to the Earth (and vice-versa), which seems unreasonable. This is of course due to the very small
amounts of energy available in the ZP field at long wavelengths. As a sanity check on the above estimate, when
exactly the same estimate is made for R ≈ 4µm, the effective cut-off frequency of 5c/R changes, yielding an energy
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in this much smaller cubic box to be on the order of 3 eV. This order of magnitude estimate seems reasonable for the
energy amounts that should be relevant in a van der Waals attraction between molecules.
In the previous two examples of the last paragraph, the maximal frequency ωc corresponds to a minimal wavelength,

λmin = 2πc/ωc, which is on the order of the separation distance between the attracting bodies. The spectral energy
density for ZP radiation wavelengths longer than λmin, λ ≥ λmin, is ρE = ~ω4c/

¡
8π2c3

¢
. In both examples we

have considered as effective in the purported van der Waals attractive interaction only the ZP radiation in that
range, 0 ≤ ω ≤ ωc, enclosed in a volume V0 that we estimated to be on the order of λ

3
min, V0

∼= λ3min. Now, if the
associated motions are strictly quasistatic, it might be argued that such a volume is perhaps too small and that in
the hypothetical extreme case of a strictly static situation, the volume should become indefinitely large; i.e., rather
one should use V0 on the order of the “volume of the Universe” (whatever that really means). Of course, ordinary
gravitating astrophysical bodies do not exist in static situations, but undergo motions (e.g., orbits) with respect to
each other. In spite of this, we introduce an additional counter-example where the volume V0 is on the order of the
“volume of the Universe.” Newton’s gravitational theory has been thoroughly tested in the Solar System and even
beyond and found to amply hold. Let us consider a λmin on the order of 10

−3 light years, that roughly corresponds to
a distance on the order of the orbital radius of Pluto around the Sun. In such a case, ωc = 2πc/λmin ∼= 2×10−4 sec−1
and the corresponding energy density is ρE ∼= 8× 10−76 erg cm−3. Subsequently, let us consider as the “volume of
the Universe” a volume VT equal to that of a cube of side L = 2 × 1010 light years, i.e., VT ∼= 7 × 1084 cm3. This
gives a total energy available for the purported relevant part of the ZP field that is active for the corresponding Pluto
to Sun gravitational attraction of E ∼= ρEVT ∼= 6 × 109 erg = 600 Joules (!). Clearly the energies and changes of
energy (kinetic and/or potential) associated with motions of planets like Pluto around the Sun are enormously larger
than this tiny energy, confirming thereby the fact adduced to above that, in the low frequencies of the ZP radiation,
energies are almost negligible and that consequently gravitation cannot plausibly be conjectured to be a long range
van der Waals force induced by the extremely low frequency ZP field components. As Newton’s gravitational law
has been successfully applied to the trajectories of comets, and comets are known to go up to the Oort Cloud at a
distance from the Sun of at least a few light days (and even more), an additional and even more compelling argument
may be easily constructed for that case with λmin u 10−2 light years, ρE ∼= 8 × 10−80 erg/cm3, and if the same
VT ∼= 7 × 1084 cm3 volume is assumed, the energy comes out to be E = ρEVT = 6 × 10−2 Joules! Of course the
changes in kinetic and in potential energy associated with the motion of a comet from perihelion to aphelion and back
are in absolute value much larger than this extremely small energy [27].

V. ADDITIONAL REMARKS

If the additional constraints are imposed of (i) an upper limit of ωi in the integration, with ωi < ω0, as well as that
(ii) the limit of ω0 → 0 be taken, then this procedure is equivalent to saying that additional physical effects need to
be imposed that are not present in the full Casimir-Polder expression. Indeed, after reading Refs. [1] and [24], one
might have the impression that the Casimir-Polder expression reduces to a 1/R potential if one could only calculate it
appropriately under the correct conditions. Instead, the Casimir-Polder expression clearly contains the retarded van
der Waals expression with its 1/R7 dependence as a limiting case (Figs. 1 and 2). The physical reasoning of the largest
contribution to this van der Waals force result being due to the small frequency regime is indeed correct and is not an
additional requirement that needs to be imposed when evaluating the integral in Eq. (1). Instead, the requirements
of Puthoff in Ref. [24] involving ωi, ωi < ω0, and ω0 → 0, constitute additional physical impositions (as they are
not derivable from proper mathematical arguments), that are not contained within the Casimir-Polder equation.
Consequently, without any further justification available, we conclude that Puthoff’s proposal that the Newtonian
gravitational attraction arises from a van der Waals force-like interaction [1], [24], is presently unsupported. However,
it does seem reasonable to expect there are ties yet to be discovered between ZP fields and gravitation, as emphasized
by the cosmological constant problem [30].
Finally, we should note that two of us (KD and AR) carried out integration analysis for the first term of Eq. (1)

above in work reported in Ref. [31]. This was the same term used by Puthoff [1], [24], as the objective was to check
in detail the technique of Refs. [1], [24]. Even here, for realistic upper frequency limits, a 1/R potential did not arise.
One may still speculate that a fully relativistic analysis involving the ZP high frequencies and very fast oscillatory
motion might still reveal a main term with a 1/R potential dependence, but this remains to be proven (or disproved).
In Ref. [1], Puthoff assumed that Zitterbewegung (very fast) oscillations occur for charged particles or subparticles

(partons) due to the influence of electromagnetic ZP field fluctuations. As in quantum theory it is reasonable to expect
that those motions are ultrarelativistic. Hence one can argue that a fully relativistic analysis should, for consistency,
have been implemented in Ref. [1]. On these grounds, it can be argued that the subrelativistic procedure of Ref. [1]
is suspect and the Newtonian gravitational inverse square force should not be expected to result. Moreover, one can
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argue that since the various ZP fields, namely, the ground states of the various interactions, clearly make a contribution
to the observed mass of particles (i.e., ZP fields are a widely accepted component of the mass renormalization process
that thereby contribute to inertial mass [32]- [35]), then via the equivalence principle, we should expect some ZP field
contributions to gravity. Nevertheless, we do not expect that a relativistic reanalysis of the relativistic van der Waals
forces analysis of Puthoff [1] will yet recover a 1/R potential, but rather that the mass contribution of ZP fields and
its ultimate connection with gravity, will show up in other ways, perhaps more along the lines of Sakharov’s and
others’ [5]- [14] or Dicke’s [20], Wilson’s [19], and Puthoff’s [18] proposals.
Thus, we have (a) explicitly evaluated the Casimir-Polder integral, (b) shown the connection to the unretarded

and retarded expressions, (c) concluded that, barring the introduction of additional physical assumptions into the
analysis in Refs. [1] and [24], the specific argument presented there involving an average force induced by ZP fields,
will not yield a Newtonian gravitational force signature, and finally (d) we have provided an energy-based argument
why the gravitational attraction is not likely to be a long range van der Waals type force originating in the very low
frequencies of the ZP radiation spectrum, 0 ≤ ω ≤ ωc, ωc = 2πc/λmin (λmin is on the order of the separation distance
between the attracting bodies).

Figures

FIG. 1: Plot containing ln [I(b)], ln [Ir(b)], and ln [Iur(b)] vs. ln (b). Here, ln [Ir(b)] and ln [Iur(b)] appear as straight
lines with slopes of −4 and −3, respectively.
FIG. 2: Plot containing I(b), Ir(b), and Iur(b) vs. b.
FIG. 3. (a) Plot of the integrand in Eq. (3), scaled by b4, vs. w, for a range of smaller values of b. Notice that the

largest contribution for each curve falls in the region approximately given by 0 ≤ w ≤ 2b. (b) Same as (a), but for
larger values of b. The b = 50, 100 curves cannot be distinguished here. (c) Plot of f · b4 = b4/ ¡w2 + b2¢2 vs. w for
corresponding values of b as in (a). (d) Plot of f · b4 vs. w for corresponding values of b as in (b).
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