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Recently the classical electrodynamic zero-point spectrum was derived as being the appropriate spec-
trum for the thermodynamic definition of absolute-zero temperature to hold for classical, electric dipole
harmonic oscillators [Cole, Phys. Rev. A 42, 1847 (1990)]. This analysis involved the lengthy calculation
of nonperturbative, retarded van der Waals thermodynamic functions. Here this derivation is shown to
hold for the much simpler unretarded, resonance situation. The connection to quantum mechanics is

then more immediate.

PACS number(s): 05.90.+m, 05.40.-+j, 05.70.—a, 34.30.+h

The theory of stochastic electrodynamics (SED) con-
siders the behavior of classical electromagnetic fields and
classical charged particles to obey (i) Maxwell’s equations
and (ii) the relativistic generalization of Newton’s second
law of motion. Where this theory differs from traditional
classical physics is that the assumption is not also im-
posed that electromagnetic thermal radiation must
reduce to zero at absolute zero temperature. Instead, the
T =0 spectrum is taken to be the classical electromagnet-
ic zero-point (ZP) radiation spectrum, which assigns an
energy of #iw/2 to each mode in the spectrum. Surpris-
ingly, this simple change has enabled quantum physical
properties to be deduced for a number of physical sys-
tems. References [1-6] review this work. Some very in-
teresting results have been obtained to date. Neverthe-
less, presently the full range of strengths and shortcom-
ings of this theory for describing nature is not fully
known, particularly for nonlinear, realistic systems in na-
ture, such as the hydrogen atom.

A recent result obtained in SED will be extended fur-
ther here. In Ref. [7] the functional form of the classical
electromagnetic ZP radiation spectrum was deduced as
the appropriate spectrum to be in equilibrium at tempera-
ture T =0 with a set of nonrelativistic electric dipole sim-
ple harmonic oscillators, if the system is to obey the fun-
damental thermodynamic definition of absolute-zero tem-
perature. If SED is a fundamental theory of nature, then
this same result should apply to more complicated, and
more physically realistic, systems. Indeed, Ref. [8]
showed that this property also holds for blackbody radia-
tion between conducting parallel plates, or within con-
ducting rectangular cavities.

The calculations in Ref. [7] were quite involved (e.g.,
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see the Appendix), largely because the full unretarded
fields were treated. Since heat flow (@), due to elec-
tromagnetic thermal radiation, is largely a result of the
radiation fields from atoms, I originally assumed it was
necessary to retain these terms when calculating {(Q)
during a quasistatic thermodynamic operation. Howev-
er, the present analysis shows that retaining these terms
is not necessary. If one directly calculates the heat radi-
ated via the use of the Poynting vector [as in Egs. (23)
and (28a)-(28d) in Ref. [6]], then yes, one must include
the radiation fields. However, { @) in Ref. [7] was calcu-
lated not directly with the Poynting vector, but rather by
finding the ensemble average of the change in internal en-
ergy of the system (A%/,) and the work done (W)
upon displacing one or more dipole oscillators,

(@) ={AUy)— (W) . ¢y

(These terms are described in detail in Ref. [6].) For
(AU, and (W), the radiation terms add only correc-
tion terms and are not essential, provided the oscillators
are sufficiently close to each other that they satisfy
woR /c << 1, where R is the maximum distance between
oscillators and w, is the approximate resonant frequency
of each oscillator.

The resulting derivation for the ZP spectrum is consid-
erably shorter, and the connection with quantum
mechanics more immediate. Of course, the fact that the
ZP spectrum was deduced when all the radiation terms
was retained is indeed physically significant, and certainly
more significant than not retaining them; however, re-
taining them is not necessary if the purpose of the deriva-
tion is to simply examine the essential physical content of
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the reasoning. : o

To begin our analysis, the kinetic (KE), potential (PE),
and electromagnetic (EM) energies for N dipole oscilla-
tors in Ref. [7] are given by
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and by Upvpags Uswpp, and Ugypi,, which
represent volume integrals over the electromagnetic ener-
gy cross terms due to the acceleration fields of each indi-
vidual oscillator, the dipole-dipole fields, and the dipole-
incident fields, respectively. The notation here follows
Ref. [7]. In particular,

Clo)==a+awj—ilo’, @
e2 ﬂfi)(ZA _ZB,CO)
M 41;5 =8 458y —(1=8 gp) === (5)
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where n,zj?(x—Z 4>@) occurs in the electric-field expres-
sion for an electric dipole p ,(z) at position Z , (Eq. (38)
in Ref. [7]).
© The calculations for the energies Upg, Ugg, and
UM, pz-0a Were relatively short, while the ones for
"Ugym,p.p and Ugm,p.in Were quite lengthy [9]. Moreover,
Uem, 0a-De> Upm, .9 and U EM,2-in 2l depend on the shape
and size of the volume V enclosing the N particles; their

--- magnitudes can be quite large, as they increase with V.

Nevertheless, for large V, the sum of these three terms,
denoted by Ugyy;y, is independent of V.

In the unretarded (ur) case of wyR /c <<1, ng(R,wo) is
approximately given by

TR, 00)=V,V, |2 | +i2k3s,
 (=8,+3R,R,/R)
o e L +i2k3s,; ()

the real part of which is independent of w,. Under this
condition, and also when I'=e?/mc? << 1/wyg, our energy
expressions become integrals over strongly peaked in-
tegrands near w~wy, as will be shown. Substituting Eq.
(7) into the terms in brackets in Eq. (55) in Ref. [7],

[P

As we will verify shortly [aftcf Eq. (19)], only' the real part of the quaﬁfity in équare brackets contributes in the reso-
nance approximation. Neglecting the 2iT'w} term, Eq. (8) can then be shown to be precisely equal to the “electrostatic”

[10],

where ‘
5 .
(B3 4(x,0)];= 3 Re[nD™(x—Z )]p;(t), (10
i=1 _

and p ,(t)=edz ,(2).

- We have now explicitly justified using only the energies
Upg, Ukg, and Ugy g5 when calculating the total ener-
gy in the unretarded van der Waals situation. We
obtained this result despite the fact that
UeM, 9402 » Uem,p.p> and Ugm,p.in are each not at all
negligible, since they increase with V. The calculations
for Upg, Ukg, and UE}y, 4.4 are enormously simpler than
these other terms. Moreover, we have the welcome con-
nection that Ugly .4 is precisely the electrostatic energy
of interaction used in quantum mechanics when calculat-
ing the unretarded van der Waals force between electric
dipoles [11,12]. The quantity U Emlin in Ref. [7] contains
the remaining radiative contributions to the total energy.

Turning to the resonance method for explicitly evaluat-

energy of interaction between electric dipoles, computed using only the unretarded (wR /c << 1) electric dipole fields

EMpo=" 3 %f Px(BE 4 Efp)=—% 3 Re[n]™(Z,~Zs)p(tpg (1), ©
A,}}:;l Ty A+#B,i,j ’ '

ing the integrals in the energy terms, we can make use of
the diagonalization procedure by Blanco, Franca, and
Santos in Ref. [13]. Let

; L=MmC(o)~E+iImR —mo* , (11)

where
(K) 41,8 = mofd 458;—(1—5 45 Je’Ren "™ (Z 4 ~Zp) ,
' (12)

Im(R) 4,5/ =~Tme8 158,
_(I—SAB)eZIm’ﬂ?}m‘(ZA_ZB,w) . (13)

Since K is symmetric, there exists an orthogonal matrix
A that transforms and diagonalizes K,

(AKA) 41,5 =(K") 41;;=8 455,may; . (14)
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A subsequent transformation due to I+C, where
C=0(e?), as discussed in Ref [13], then enables L to be
diagonalized up to order O(e*) in the charge:

(L") 41,5 =8 458;[m (&% —0®)+i ImR Yy, ()]
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To calculate Upg, Ugg, and UR)y; 9.9, as well as show

that Ugy pp=Ugpmjn, we need to make use of (i)

Tr(L™'B)=Tr(L"~'B") and (ii) the resonance integral

evaluation described in a2 number of other places, such as
Refs. [13] and [14]. Consider the following:

+0(e4) . (15)
l.
N3 B:4,1 Al
doIm{ Tr[L " Yw)B(0)]}~ | dolm +0(e*)
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) fwd Re(B.,Alx,Az (= ImRAt 4i)+ Im(B; ; di )m(a’z,u“‘wz)
~ [1)] -
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Here, we used the fact that ImR Ai; Ai <0. To evaluate Hence, UEMlian%‘M,ﬂz) and
UPE’ let 77_2 6)2 i _‘Cl)2
=S T 2 470
B=Imuhl (o) wj/®) ; EM> -0 ,42 2 hia(@ 4) &, » 21
1 i
for Ugg, B=Imwh}(w)o. In both cases, B=B", and ielding Uor + U = d
we obtain B yielding Upg T Ugm, 9.0 = Uke, an
N 3 ,-,-7- 2 Upg +Uggt UgM,ﬂ)-i)*’E"’lh n(@ ) - (22)
UPEz E 2 2 ‘n(ain) (17)
A=1i=1 O 4 Turning to the work (W) done in slowly displacing
N 3 2 the dipoles from positions Z 4 ; to Z 4 y;, Sec. V in Ref. [7]
Uge= AE_I 121 Th (@ 4) (18)  showed how (W) was related to

As for Uty 9.9 B(a))=m1rh 2( co)Q ), where

Q4ipj = (1—aAB> Ren?} Z4—~Zs). (19

For Ugyjip, one would add the imaginary term 8; 20 I‘a)%

in square brackets in Eq. (8) to Q 4;,5;- Since B'= ABA
and here B=0(e?), while 4 L ais5) contains terms of order
O(e?),  then _12’— (e?) as  well Hence,
B"=(I+C)7'B'(I+C)~B'+0(e*), since C=0(e?).
Moreover, ReB"~ ReB’'=_4 Re(B)A, since A4 is real.
Thus, ReB" is identical, except for terms of order O(e?),
for both cases of Ugy p.p and Ugyjy,. From Egs. (12)
and (14),

(Fror, 4(2))
B a(Z.0o00+ 28 4 X By 4 Z 451))

¢ 23)
which represents the Lorentz force acting on electric di-
pole A due to the total (tot) sum of the thermal radiation
fields plus the fields of the other (B7# A) oscillators. The
following point will just be noted here. With some
difficulty, and using the analysis in Sec. III of Ref. [15],
one can show that in the unretarded, resonant condition,
the calculation of (FLor 4 ) using Bq. (23) is equivalent
to lowest order in e? to the same quantity, but where
E. 4 and B 4 in Eq. (23) are replaced by only the sum
over the B# A unretarded dipole fields, and the thermal
fields are excluded.

=(PA'VZA
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From Egs. (1), (22), and (24), we can now deduce that
for no heat to flow during a slow displacement operation,
as required by the thermodynamic definition of 7 =0,
then

2 2 ‘ . - - - =
hm(w) = ah;‘ia{) s e s LSS0 () §)
[} [P A

Hence, 4% =k, which yields the spectral form for classi-
cal electromagnetic ZP radiation.

In conclusion, besides deducing the form of cIassxcal
electromagnetic ZP spectrum, we also explicitly obtained
that at T =0 (i) the kinetic plus “electrostatic” energy of
a set of classical electric dipole harmonic oscillators
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equals a constant times the sum of the normal frequencies
of oscillators [Eq. (22) with A —-Kw] and (i) the work
done in displacing these dlpoles equals the difference in
this sum of frequencies [Eq. (24) with A% =kw]. The

same result occurs in quantum mechanics at T =0, al-

though in quantum mechanics one does not make a dis-
tinction in the methods. for calculating these two quanti-

. ties at T=0. In classical physics the methods are quite

different: one method involves the ensemble average of
kinetic and potential energies, while the other entails the
average of the Lorentz force. As shown here, these two
methods become equivalent for harmonic oscillators
when the thermal radiation spectrum has the ZP spectral
form.
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