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Cross-term conservation relationships for electromagnetic energy, linear momen-
tum, and angular momentum are derived and discussed here. When two or more
sources of electromagnetic fields are present, these relationships connect the
cross terms that appear in the traditional expressions for the electromagnetic
(1) energy, (2) linear momentum, and (3 ) angular momentum, over to, respectively,
(1) the sum of the rates of wark, (2) the sum of the forces, and (3) the sum of
the torques, that are due to the fields of each charge or current source acting upon
the other charge and current sources. These relationships, although not new,
appear to be rarely recognized and used in the physics literature. As shown here,
they can be extremely helpful for solving and gaining a deeper physical under-
standing into a rather diverse range of interesting problems in electrodynamics,
including (1) aspects of Poynting’s theorem when applied to charged point par-
ticles, (2) the detailed physical basis of electrostatic analysis, (3) understanding
the connection between different techniques used in the past for solving Casimir
force problems, and (4) reconciling the invalidity of Newton’s third law in elec-
trodynamics.

1. INTRODUCTION

A set of conservation relationships are derived and discussed here for the
“cross-terms” that appear in the conventional expressions for electro-
magnetic energy, momentum, and angular momentum. These “cross-term,”
as will be referred to here, entail terms such as (E,-E,+B,;-B,), that
arises when expanding the expression

(E; + E;)*+ (B, + By)?
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or, for example, (E, x B,) + (E, x B,), that arises when expanding
(E; + E3) x (B, +B,)

where E,, E,, B,, and B,, are electric and magnetic fields associated with
two different charge and/or current sources. The three relationships for the
cross-terms of electromagnetic energy, momentum, and angular momen-
tum that will be discussed here relate these cross-term expressions to,
respectively, the sum of the rates of work, the sum of the forces, and the
sum of the torques, due to each charge and current distribution acting on
the other one.

These cross-tenn relationships, although certainly known, appear to be
rarely discussed and used in the physics literature, but, as discussed here,
are often extremely helpful when solving various electrodynamic problems
that involve more than one electromagnetic source. Indeed, a number of
classical problems are treated here by making direct use of these cross-term
relationships, often resulting in exact solutions and usually enabling a
deeper insight and easier means for obtaining these solutions. One key
advantage to these relationships is that they can be used to solve certain
classes of problems while avoiding the singularities encountered when
dealing with classical charged point particles and point multipole charge
distributions. Thus these relationships enable one to glean aspects of infor-
mation, such as the sum of the rates of work of two electromagnetic
sources acting on each other, without needing to encounter complicated
singularity and renormalization issues. Moreover, these relationships also
certainly apply to nonsingular, continuous charge and current sources, and
are helpful here as well for easily extracting the same type of information.

The outline of this article is the following. In Sec. 2, these cross-term
relationships are motivated and discussed further by noting how they can
help to supplement the normal discussion on Poynting’s theorem* when
considering charged point particles.> Here, the singularity issues that can
be avoided with the cross-term relationships are explicitly discussed. In
Sec. 3 of this article, these cross-term relationships are derived and briefly
discussed. As shown here, the derivations are close to, but not the same as,
those used in standard textbooks!™ for obtaining relationships for the
time-rate of change of the full electromagnetic quantities; they differ in the
use of cross-term quantities. Section 4 turns to a number of examples of
applications of the cross-term relationships. Most of the problems dis-
cussed here have been analyzed and published in the physics literature

2 At the beginning of Ref. 3 (see p.2), Stratton states that only continuous charge distribu-
tions will be considered. He discusses only the macroscopic Maxwell equations, while the
present article deals with the microscopic Maxwell equations. Reference 4 deals primarily
with the macroscopic Maxwell equations, at least until Chap. 19.
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before but have not made use of the cross-term relationships. As will be
seen, the cross-term relationships enable the desired results to be obtained
by easier means, and often enable exact solutions to be obtained. The
problems discussed here were chosen to attempt to provide an interesting
range of electrodynamic examples, from such fundamental topics as (1) the
invalidity (except in the electrostatic case) of Newton’s third law for classi-
cal electromagnetic forces®®” and (2) the connection between work done
by electrostatic forces and changes in electrostatic energy due to small dis-
placements of charged bodies,? to more advanced and specialized topics
such as (3) the calculation of van der Waals forces in quantum electro-
dynamics, as well as (4) the calculation of the classical lag effect, which is
closely tied to the Aharonov-Bohm effect in quantum mechanics.® 9

2. POYNTING’S THEOREM AND THE CROSS-TERM
RELATIONSHIPS

Poynting’s theorem, as derived in standard textbooks on electro-
magnetism, ! 2 states that the rate of work done by electromagnetic fields
upon a charge distribution in a volume V is related to the rate of change
of electromagnetic energy in ¥ plus the rate of electromagnetic energy
radiated out of V. Similar relationships hold for electromagnetic linear
momentum and angular momentum, as well as more complicated quanti-
ties.!% 1) 4 However, these conservation laws, as usually derived, hold
only for continuous charge distributions. In the case of point charges,
singularities arise that prevent the finite evaluation of the quantities
appearing in these relationships.!?" ®

Most of the standard textbooks on electromagnetism do not explicitly
state that their steps in deriving Poynting’s theorem hold only for con-
tinuous charge and current distributions. Indeed, upon reading some of the
derivations, one cannot help but feel that the author is implying that the
derivation is intended to include the case of point charges.® Undoubtedly

3 See, for example, Ref. 1, Sec. 1.11.

4 See, in particular, Ref. 10. Also see Secs. 3.17 and 4.9-4.12 in Ref. 11.

% For an interesting related discussion, see Ref, 12.

SFor an example where Poynting’s theorem is inappropriately implied to hold for point
charges, see p. 76 of Ref 2. The assumption of ev.E =(d/dt) Ey,, just after Eq. (31.3),
implies that point charges are being considered. A similar problem occurs in Ref. 1 with the
consideration of Eq. (6.113), F=¢(E + (v/c) x B. Also, at several other points in the discus-
sion of Sec. 6.7 in Ref. 1, “particles” are referred to rather than continuous charge and current
sources. As long as the particles are extended charged particles, there exists no problem with
the derivation; however, this restriction is not explicitly made, except for one brief mention
of continuous charge and current sources at the beginning of Sec. 6.7. Consequently, many
students will undoubtedly think in terms of point particles when reading the derivation.
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this implication is just an oversight and is unintentional, or possibly it is
done for pedagogical reasons to avoid raising the confusing difficulties
associated with point charges too early in the text. Alternatively, the
authors may want the students studying the text to intuitively feel comfort-
able with the central quantity

[3-Eax
that appears in Poynting’s theorem, or the quantity
- 1 3
j pE+-JxB)d’

that appears in the related theorem on conservation of momentum. By
thinking in terms of charged point particles, then the student will identify
the above two quantities as being the sum of the rates of work

dz,(1)

Z q;E[z,(?), 1] T

i (sum over particles)

and the sum of the forces

Laz(0), pran), t]}

Y g R0+ %

i (sum over particles)

on a system of point charges. Unfortunately, the danger exists here that if
the student thinks more deeply about the above quantities and realizes that
the fields E and B in Poynting’s theorem are the fotal electromagnetic
fields, including the fields at the particle itself, then more confusion may
arise since the above two quantities do not in general have finite values for
point charges.

Of course, the authors of these textbooks are well aware of the dif-
ficulties involved with dealing with point charges; indeed, later in their
texts they usually devote a large portion of material specifically to the
appropriate equation of motion governing the charged point particle. The
reasoning involved with deducing this equation of motion is directly tied
to ideas about conservation of energy and momentum, as in Poynting’s
theorem and the related electromagnetic theorem on conservation of
momentum. However, in the case of point charges, any discussion on con-
servation of energy and momentum must confront the singularities arising
from the self-fields of the particles. The usual derivations of Poynting’s
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theorem in standard textbooks make no mention of this issue; resolving
this issue can be done, but only with additional physical arguments, such
as are found in the renormalization steps discussed in Refs. 13 and 14.

Consider, for example, the usual expression for the electromagnetic
energy in a volume ¥, due to two point charges:

UE&Mzgif dsx[(EA+EB)2+(BA+BB)2] (1)
Ay

where the fields labelled by A and B will be taken here to be the full retarded
fields of the two particles. From Eq. (1), Uggn can be written as the sum
of three terms: namely, two single-particle electromagnetic energy terms,

1
UA(B)=é;jV dsx[(EA(B))2+(BA(B))2] (2)

where either the label A or B would be used in Eq. (1), plus the electro-
magnetic energy due to the cross-term

Urp= f d’x Ua B (3)
v
where
1
usp(x, t)= - [(Eo-Eg+Eg-E )+ (B, -Bg+By-B,)] (4)

(Writing u, 5 in the particular way given above emphasizes its corre-
spondence with the structure of other cross-terms encountered later.)

For points in space at a small distance R from a particle, the integrand
in Eq. (2) varies as 1/R* Since the volume of a spherical shell equals
4nR? dR, then the single particle energy terms in Eq. (2) are divergent.
Consequently, the usual formulation of Poynting’s theorem cannot be
directly applied to point charges.” Moreover, analogous singularities occur

7 One might wonder why a simple use of the Dirac delta formalism doesn’t help to get around
these problems, by assigning p(x) = ¢6*(x —2(f)) and J(x) = g#(r) 6*(x —2(1)) to the charge
and current densities, respectively, of a point charged particle at position z(f). A moment’s
reflection, though, reveals the difficulty. Upon following the usual derivations for energy or
momentum conservation, one encounters terms like { d*x J.E and [ d3x(pE + (1/c) Jx B).
Upon inserting p(x) = g6*(x —2(1)) and J(x) = q2(¢) §*(x —z(1)) into these expressions, one
sees the very singular nature of the resulting integrals, due to the fields E and B being
singular at x =z(¢).
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in the electromagnetic linear momentum and angular momentum of point
charges, resulting in the inapplicability of the standard conservation rela-
tionships associated with these quantities.

When considering energy and linear momentum, a renormalization
procedure for removing singularities can be carried out by appropriately
combining mechanical kinetic energy and mechanical linear momentum
with the singular terms that arise in the electromagnetic energy and
momentum expressions. Dirac first formulated this procedure, which
resulted in a renormalized mass for a classical charged point particle and
an equation of motion that is now usually referred to as the Lorentz-Dirac
equation: (1% 1319

d*z* 2q2{daz” 1<dzz‘d221>dz“jl qg . d (5)

il B A L pw®y | pu
di* 3| d? A\di? &) dr | ¢ F dr T o
where F#* =3#4" — 0”A* represents the usual electromagnetic tensor due to
incident radiation plus the retarded fields of other electromagnetic sources,
and F%,  represents other external four-forces. A similar, but more com-
plicated renormalization procedure also exists for removing singularities in
the angular momentum case.'¥

As will be shown here, relationships for point charges, as well as for
continuous charge distributions, can be derived without encountering
singularities for the time-rate of change of the cross-term quantities
associated with electromagnetic energy, linear momentum, and angular
momentum. For example, note that unlike Eq. (2), U, 5 in Eq. (3) is non-
singular since the integrand varies as 1/R? near each particle. Moreover,
the cross-term relationships may be applied to charge distributions of even
a more singular nature than point charges, namely, point multipole charge
distributions. This point is explained at the end of Sec. 3, as its validity is
certainly not apparent from the present discussion.

This derivation of these cross-term relationships does not require the
use of a renormalization procedure. In general, however, the physical infor-
mation embodied by these cross-term relationships cannot serve as a sub-
stitute for the energy-momentum relationship of Eq. (5) or for angular
momentum relationships obtained via renormalization procedures.'® The
latter two relationships, obtained via renormalization, impose constraints
that restrict particle motion to specific trajectories. As described in the
following section, the cross-term relationships do not contain these con-
straints, but rather they apply to whatever trajectory is prescribed for the
particles. Hence, the cross-term relationships certainly do not include all
the information that is embodied, for example, within the Lorentz-Dirac
equation, such as being able to predict the trajectory of a particle.
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Nevertheless, as will be shown, the cross-term relationships enable one to
obtain a variety of other useful information about the electromagnetic
interactions between charge and current distributions, while avoiding
singularity problems. In particular, these relationships directly provide
information on the sum of the rates of work, the sum of the forces, and the
sum of the torques, for charge and current sources acting on each other.

3. DERIVATION AND DISCUSSION OF ELECTROMAGNETIC
CROSS-TERM RELATIONSHIPS

Let E, and B, be any electric and magnetic fields that are solutions
of Maxwell’s equations, where the electromagnetic sources are given by a
charge density p,(x, 7) and a current density J4(x, £). Usually E, and B,
are chosen as the retarded fields associated with the sources p,(x, #) and
Ju(x, t). In the derivations to follow, however, one could just as well
choose the electromagnetic fields to be, for example, advanced fields
instead of retarded ones. If p, and J, both equal zero, then E, and B, are
free fields; whether they are, for example, incident free fields or advanced
free fields, also does not matter in the derivations that follow.

Now consider any second set of fields Eg and By that are solutions of
Maxwell’s equations associated with the electromagnetic sources p,(x, ¢)
and J(x, ). The following steps then immediately apply:

¢ 10E,

I 1)-Enlx, 0= 1 (Vx BA—;—at—) ‘En

¢ 1 0By OE,
- _Z;V.(EBXBA)‘E<BA_6_{_+—67-EB>

By reversing A and B in Eq. (6) and adding the two equations together,
one obtains

0
Ja(x, 1) - Eg(x, t) + Jp(x, 1) - Eax, 1) = % uan(x, 1) —V-Spp(x, 1) (7)
where
c
San(X, t)=E(EAXBB+EBXBA) (8)

and u,. g is given in Eq. (4).
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Integrating over a volume ¥ that contains the charge distributions
immediately vields the result that the work per time

J dPx JA(x, 1) - Eg(x, 1)

by the fields of source B upon the charge distribution A, plus the work per
time

f d3x Jy(x, 1) - Ea(X, 1)
14
of the analogous quantity, equals the negative of the sum of (1)

d
a jV dx uy p(x, 1)

the time-rate of change of electromagnetic energy within ¥ due to the cross
terms of the total electromagnetic energy density, plus (2)

§ d*xfi-S,p(x, 1)
AY

the electromagnetic energy per unit time leaving the volume ¥ through the
surface S due to the cross terms of the total Poynting vector. If one set of
fields, for example, Eg and By, is free incident fields, then Jgz-E, =0;
hence, the only work done would be by these free fields acting on the
A-distribution. If more than two sets of fields and sources are present, i.e.,
Eiw1=EAs+Eg+Ec+ ---, then every pair of fields and sources will satisfy
the above energy-rate cross-term relationship.

Thus, the above relationship governs the sum of the rates of work that
are done by the electromagnetic fields of each charge distribution acting on
the other charge distribution and expresses them in terms of the cross-term
parts of the remaining quantities in Poynting’s theorem. This result is typi-
cal of the three cross-term relationships that will be discussed in this article.
These relationships are obtained by breaking the total field into parts, E,
=Ep+Eg+Ec+ .-+, and physically attributing the field parts E,, Eg,
etc,, to different charge and current sources. This procedure follows the
usual practice of identifying fields with sources.

Since Eq. (7) does not consider the rate of work done by the fields of
a charge distribution upon itself, then the singularities encountered for
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point charges in Poynting’s theorem are not found here. To apply Eq. (7)
to point charges, let

Pamy(X, 1) =‘1A(B)53[X‘ZA(B)U)] %)
Jam) (X, t) = qamyZam)(?) 53[X_ZA(B)(t)] (10)

where z,g)(?) equals the position of the A(B) particle at time 7, and
Zacm) = (d/dt) Zae,. Integrating over a volume ¥ that contains the particles
then yields

gaza(t) - Ep[za(1), 1]+ gpip(t) - El2g(2), 7]

d
- _thv d*x uA,B—3€S d%xf-Sap (11)

In a sense, the derivation of the energy-rate cross-term relationship of
Eq. (7) is a generalization of the usual derivation of Poynting’s theorem as
applied to the microscopic Maxwell equations. Thus, the usual theorem
follows immediately from Eq. (7) by (1) considering only continuous
charge distributions, (2) by letting A equal B in Eq. (7), and (3) by treating
E,, B4, pa, and J, as the total fields and charge sources that are present.
The equation that results was first derived in 1884 by Poynting® for the
case of the macroscopic Maxwell equations.

Often in standard textbooks, one proceeds from Poynting’s theorem to
a conservation law for total energy. (See, e.g., Refs. 1 and 2.) If all forces
are electromagnetic, then one can write for continuous charge distributions

d

d3? By =— 2
J;/ X Jtotal total dt Umech (1 )

where U, represents the mechanical kinetic energy associated with the
charge distribution. In this way, a full conservation relationship is obtained
for the sum of mechanical kinetic energy plus electromagnetic energy:

d

% (Umeen + Ugara) = —$_ x-S (13)

The step made in Eq. (12) involves a somewhat subtle point. Here,
an assumption was made concerning the rate of change of mechanical
kinetic energy; this assumption cannot be deduced from Maxwell’s equations.
A similar statement applies to the derivations of the analogous electro-
dynamic conservation theorems of linear and angular momentum, where
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an assumption must be introduced concerning the time-rate of change of
mechanical linear momentum and mechanical angular momentum, respec-
tively. All the other steps in the derivations of these three conservation rela-
tionships follow entirely from Maxwell’s equations, as they involve only
electromagnetic quantities. In particular, the following quantities appear:
(1) the rate of work, (2) the force, and ( 3) the torque on a charge distribu-
tion due to the Lorentz force per unit volume

p(x, t) E(x, 1) +%J(x, 1) x B(x, t)

By making the additional assumptions that equate these three quantities
to, respectively, the time-rate of change of (1) mechanical kinetic energy
[as in Eq. (12)], (2) mechanical linear momentum, and (3) mechanical
angular momentum, then the three conservation relationships follow. (The
implicit assumption is made in these derivations that only electromagnetic
forces are present.)

The importance of noting the above point lies in understanding a
characteristic of the cross-term relationships for point charges that may at
first seem peculiar. Equation (11) illustrates this feature: no matter what
trajectories the two point charges may follow, Eq. (11) is perfectly valid.
Indeed, Eq. (11) places no restrictions on the motions of the two charges.
This result arises because Maxwell’s equations are perfectly valid for
arbitrary trajectories of charges, and only Maxwell’s equations were used in
obtaining Eq. (11). However, if other constraints are imposed, as in
Eq. (12), then the allowed motions become restricted. In particular, when
demanding that the total electromagnetic and mechanical energy and linear
momentum be conserved for a single point charge in an incident electro-
magnetic field, and after carrying out a particular renormalization procedure,
then a specific equation of motion can be deduced: namely, the Lorentz—-
Dirac equation corresponding to this situation.®

Finally, the same technique used to obtain the electromagnetic cross-
term energy-rate relationship of Eq. (7) can be used to obtain other elec-
tromagnetic cross-term relationships. Below, the electromagnetic linear
momentum- and angular momentum-rate cross-term relationships are
given, where all quantities are evaluated at position x and time #

& For further explanation on the indicated renormalization procedure, see Ref. 14, Sec. 8.1, as
well as the comment at the end of Sec. 7.2. This renormalization method removes the
dependence of the sum of the material four-momentum plus the bound clectromagnetic four-
momentum upon the orientation of the surface o(r) described in Ref, 14.
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1 1
l:pAEB""E (Jax BB)] +lipBEA+Z (Jp x BA):]

10
=75 San+ V- Tas (14)

1 1
xx<pAEB+;JAxBB>+xx<pBEA+EJBxBA>

10
=—?—a—t(xxSA_B)—V'(TA-BXX) (15)

where

1
Thpy= in [(Ea:Epj+ Eg;Ep;) + (Ba; By + Bp; By)

—0;(Es-Ep+B,-Bp)] (16)

It should be noted that the results of this section can be written in a
covariant form. For example, just as the usual electromagnetic energy-rate
and momentum-rate relationships can be written in the covariant form of°

1
0,0 = ——F"J, (17)

so also can the corresponding cross-term relationships of Eqs. (7) and (14)
be written as(!6» 10

1 1
0,0%, = —EFQJB,—EF‘,?JM (18)

where @9, represents the cross terms of the electromagnetic symmetric
energy-momentum tensor.

Finally, before leaving this section, a clarification needs to be made on
the applicability of the electromagnetic cross-term relationships and the
usual full-field relationships, when singular charge distributions are present.
Poynting’s theorem holds for continuous charge distributions and can be
applied when moving surface charges are present. However, Poynting’s
theorem does not hold in general for regions of space that include higher-
order singular charge distributions, due to, for example, moving (1) line
charges, (2) point charges, and (3) point multipoles.!

% See, for example, p. 611 in Ref. 1.
10 Rowe presented this cross-term relationship in Ref. 16, following Eq. (64) on p. 3653.
1 See, for example, Secs. 1.6-1.9 in Ref. 4 for a discussion on singular charge distributions.
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In contrast to the above restriction, the cross-term relationships are
generally valid, provided that two charge distributions are considered that
do not have singularities at the same point in space. At first glance, the
volume integral of the right-hand side of either Eq. (7), Eq. (14), and
Eq. (15) might appear to yield a singular result when a region of space is
considered that contains, for example, an electric dipole moving at a con-
stant velocity in the presence of incident fields. In particular, the integrals
§d’xtap, [dxS,p, and [ dx(xxS,p), might cause some concern.
Nevertheless, although some care must be taken in carrying out the volume
integral on the right-hand sides of Egs. (7), (14), and (15), the integrals do
exist, and are finite. This result is seen most easily by considering the left-
hand sides. For a stationary electric dipole in the presence of incident
fields, the volume integral on the lefi-hand side of Eq. (14) yields

[ @2 pa(x, 1) Bglx, )= [ @[ —pa- V6*(x—RA)] Elx, 1)

=+ (pa-Va,) Ein(Ry, 0) (19)

which illustrates the operation that must be carried out in general when
dealing with such singular charge distributions. Thus, the cross-term rela-
tionships hold in general provided that the singularities of each of the
charge distributions lie at points where the fields of the other charge dis-
tribution are continuous, and continuous in all spatial derivatives up to a
sufficiently high order of derivative that the volume integrals, as in
Eq. (19), can be evaluated by repeated operations of integration by parts.

4. APPLICATIONS

Several examples are given here to illustrate how the electromagnetic
cross-term relationships can provide additional physical insight into elec-
tromagnetic interactions between charge distributions, as well as aid in
carrying out calculations for various problems. In several of the examples
discussed here, although not all of them, references and comparisons are
made to problems tackled by other researchers. A reasonable understand-
ing of these problems should be obtainable from the material described
here without excessive referencing to these other articles and texts;
however, for all the details, the reader will need to consult these other
references. This situation seems unavoidable in order to show how the
cross-term relationships can simplify, and often generalize, the previous
approaches to these problems, without lengthening this article excessively
by repeating all the details of the problems.



Electromagnetic Energy, Linear Momentum, and Angular Momentum 1685

As a starting point, the cross-term relationships may be applied to
several examples of interacting point charges discussed by Page and Adams
in Refs. 5 and 6. Using an expansion of the fields in powers of {1/c), they
calculated the sum of the Lorentz forces due to each particle acting on the
other. The point was made that the sum does not equal zero, thereby
violating the Newtonian idea of action and reaction being equal in
magnitude and opposite in direction. Upon calculating the rate of change
of momentum associated with the electromagnetic cross terms, they found
that the sum of this quantity plus the Lorentz force terms, equaled zero.
Page and Adams evaluated the quantities explicitly, but limited their
analysis to order 1/c® They gave a similar demonstration for the sum of
torques due to Lorentz forces plus the rate of change of angular momen-
tum associated with the electromagnetic cross terms.

The cross-term relationships derived in Sec. 3 involve just the ideas
illustrated by Page and Adams but show that the ideas hold exactly, not
just to terms of order 1/c% For example, by substituting Egs. (9) and (10)
in Eq. (14) and then integrating over all space, the left-hand side becomes
equal to what Page and Adams investigated to order 1/c The surface term
at infinity that arises from the right-hand side of Eq. (14) represents
radiated linear momentum. This term becomes evident only at order 1/c*
and higher, since the fields at infinity that contribute to this surface term
are the acceleration fields, where each contain a factor of 1/c® Thus, the
contribution of this radiated linear momentum term is beyond the range of
the 1/c? approximation in Refs. 5 and 6. In the analysis of the sum of the
torques, the radiation of angular momentum is similarly beyond the range
of their expansion.

Thus the analysis of Page and Adams is indeed correct, but their
results could have been carried out exactly and by a means that is con-
siderably less involved than their analysis to order 1/c2 This 1/c* analysis
was done by evaluating all terms explicitly, which is advantageous if the
explicit forms of the terms are desired, but not required if the only point
is to verify the general ideas represented by the cross-term relationships.
Moreover, these general physical ideas are not fully reflected in the rela-
tionships verified by Page and Adams, since (1) the cross-term rela-
tionships hold for an arbitrary volume ¥V of space, and not just for the case
of infinite space examined in Refs. 5 and 6; (2) the cross-term relationships
immediately apply for continuous charge and current distributions as well
as for point charge; and (3) the physical contribution of the radiated
energy, linear momentum, and angular momentum does not show up in
the 1/¢? analysis. To illustrate more explicitly, upon integrating Eq. (14)
over any volume ¥ that contains two charge distributions, one obtains the
result that the sum of the Lorentz forces of each charge distribution acting
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on the other one is equal to the negative of the cross-term contributions
due to (1) the time-rate of change of the electromagnetic linear momentum
in ¥, plus (2) the electromagnetic momentum flow out of V. Similar
statements hold for the sum of the torques, as well as for the case of the
sum of the rates of work.

A similar analysis to that of Page and Adams was carried out by
Boyer in Ref. 7. Here, the interactions of particles traveling at constant
velocities were investigated exactly (ie., not just to order 1/c?). Boyer’s
main point was the discussion and explicit verification of these three rela-
tionships, namely, Eqs. (46)-(48) in Ref. 7. These three equations are just
the cross-term relationships derived here for electromagnetic linear momen-
tum, energy, and angular momentum; however, Boyer deduced them by
quite different reasoning'? and verified them for particles moving only at
constant velocity and not for arbitrary trajectories. Moreover, the need for
the elimination of singular terms, as described in Ref. 7, is completely
removed here by dealing only with the cross-term components.

As another application, the electromagnetic energy-rate cross-term
relationship of Eq. (7) can be shown to provide a different viewpoint and
basis, from conventional discussions, on the connection between electro-
static forces and changes in electrostatic energy. The following example
illustrates this point.

Consider a charge distribution p, that is finite in extent and that is
stationary in some inertial frame. The calculations that follow are carried
out in this frame. Consequently, J, =0 and B, =0; also, E, must fall off
as fast, or faster, at large distances than 1/R", for some n where n>2. Let
a point charge gy be displaced from zg(¢) to zg(¢+ 6t) during the time
interval ¢ — r+ d¢. From Eq. (7),

. d 2 e
982p(1) - Fror, o p(?) = % (desxgEA'En>~§s d?x - (ExxBpg)

(20)

where Fy,, 5 _ p is the Lorentz force due to p, acting on gp, and gy is con-
tained in the volume V. If V is taken to be all of space, then the surface
term in Eq. (20) goes to zero, since E, x By can vary at most like 1/R? on §.
Consider Eq. (20) after being multiplied by Jr. Let Azg = zg(z) Jt. Since

12 Boyer dealt with the total electromagnetic quantities of energy and momentum. Cutoff pro-
cedures were then used, for particles moving at constant velocity, to extract the change in
relevant quantities: namely, the cross terms of the present article. It should be noted that
the surface terms are missing in Eqs. (46)~(48) of Ref. 7, as they were in Refs. 5 and 6. For
particles moving at constant velocity, this omission is correct, since the surface term at
infinity equals zero.
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Eq. (20) holds for arbitrary trajectories of g, then Azg, can be indepen-
dently varied, yet still the equation must hold. Hence,

4 2
Fioawni)= = 2= [ g [Ba(x ) Eo(x,0] (1)

Of course, the force of the stationary charge distribution Pa On gg is
given by

Fron a-n(t)=gpElz5(2), 1] = =V, {9sdalzs(t)]} (22)
where
3 Pa(X)
dalx) =[x L (23)

thereby connecting the change in the potential energy gpdalzg(2)] to the
change in the cross-term energy in Eq. (21). This connection can be explic-
itly shown by substituting E,(x, t) = — V¢ ,(x) in Eq. (21), followed by

P ill) = = g [ X Va0 Bl )]
=$fm fd3x V-[¢a(x) Eg(x, )]
_i fm [@2x $a(x, 1) V- En(x, 1)
_ _ﬁ Ai,,. [@x ga(x) dmps(x, 1) = - Ai,- qB¢A(zB(t)](24)

The first term in the second line can be shown to vanish.!® In the last line,
Eq. (9) was used.

13 The following rough outline shows why the first term in the second line vanishes. First,
taking into account possible “acceleration fields,” Eg(x,f) must vary roughly as
1/|x —zg|™, for ny > 1, at large distances from zy. Second, the electrostatic potential ¢ 4(x)
must vary as 1/|x|™, for n, > 1, for large |x|. Treating 4zy, as a small change, bringing
4/4zy,; inside the integral sign, noting that it will operate only on Eg(x, t), and noting
(4/4zg;) Eg(x, t) will vary as 1/|x —z5)"*+" for large |x), enables one to deduce that the
surface term below will vanish for S at infinity:

Azp Ldsx V-[4a(x) Ep(x, )] = Z% L d?x - [@a(x) Eg(x, 1)]

R A4
= L d’x - {m(x) EEB(X’ I)}
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In the above analysis, the assumption was not required that g move
quasistatically. Thus, Ep in the integrand on the right-hand side of Eq. (21)
need not be the electric field of a stationary charge, even though, mathe-
matically, the correct result is indeed obtained if the fields of gy are treated
as being purely Coulombic at times ¢ and 7 + dt.

Here it seems interesting to note that in order to physically realize the
situation usually considered where the electromagnetic fields before and
after moving gy are indeed electrostatic ones, then the process of moving
¢n must satisfy a number of additional conditions not yet specified and not
needed in the previous analysis. If the charge gy is brought to rest after
being displaced a short distance and Eq. (20) is integrated in time to a
point approximately R/c beyond the time where gy is brought to rest,
where R is the approximate diameter of the volume V, then the fields of g5
will again be Coulombic within V. The change in electromagnetic energy
within ¥ then explicitly becomes a change in the cross terms of electrostatic
energy. As before, if V is sufficiently large enough, then the cross-term
energy flow out of ¥ may be ignored in the time integral of Eq. (20). Equa-
tion (21) then explicitly represents the physical situation usually discussed
involving a change in electrostatic energies. Thus, the present analysis
provides deeper insight into the treatment of elementary electrostatics
where self-energies are simply dropped.'*

Another application of the cross-term relationships can be found by
using Eq. (14) to establish direct connections, under various conditions,
between (1) the surface integral of the cross terms of Maxwell’s stress
energy tensor and (2) the Lorentz force acting on a charge distribution due
to external sources. Such a result does not appear in the standard
textbooks on electrodynamics, nor apparently in the physics literature;
however, it falls out easily from the cross-term relationship of Eq. (14). As
will be seen, one interesting result of this analysis will be a deeper insight

¥ To see why the above analysis complements the usual treatment on electrostatics in
standard textbooks, see the discussion in Ref. 1, Chap. ! (e.g, pp. 42-43), and the discus-
sion in Ref 2 involving Egs. (37.4)-(37.8). An improved treatment from these two refer-
ences, involving cutoffs that are eventually removed around each charge, is given by Boyer
in Sec. IIT A of Ref. 7, as well as in Sec. II C of Ref. 17. Rowe, in Ref. 16, Sec. VII, discusses
electrostatics from another point of view, by using distribution theory to deal with the
singular self-energies. Nevertheless, unlike the discussion in the present article, which is
based on the cross-term relationship of Eq. (7), the discussions in these references on
changes in electrostatic energies do not analyze the physical operation of actually displacing
a charged particle and, consequently, do not explicitly account for electromagnetic energy
flow, as in the surface term in Eq. (20). Moreover, note that Eq. (20) is valid for any
volume ¥ and surface S enclosing the two charge sources.
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into certain calculations on van der Waals forces that have been carried
out in the past by some researchers.

Consider two spatially separated charge or current distributions. Upon
integrating Eq. (14) over a volume ¥ containing just one of the distribu-
tions, then one of the Lorentz force terms drops out. For several classes of
problems that are of general interest, the term

. 1d
Pan)= 5 [ d*xSaaln ) (25)

can be ignored. Three such cases are discussed shortly.!* For these
problems,

1 3
J, @ (paEs+  IaxBa) =§ d% 3 mTans (26)
1 4 c i S j=1

Thus, here the Lorentz force on the A charge (or current) distribution due
to the B one becomes directly related to the above surface integral of the
cross terms of the Maxwell stress—energy tensor. [ Equation (26) also holds
if E5 and By represent free fields acting on the A distribution, as often
treated in solving Casimir force related problems. Consequently, Eq. (26) is
an important one, since I am unaware of this direct relationship being pub-
lished in the Casimir literature.]

The first case, and the most obvious one, where P, 5 can be dropped
is when the fields are time independent, as in electrostatic or magnetostatic
problems. Then, (9/0t) Sa.5 =0, so that Eq. (26) becomes an exact rela-
tionship for any surface S enclosing the A, but not the B source distribu-
tion. Also, if the fields are slowly varying in time, then P, 5 can generally
be ignored, particularly so because of the 1/c* factor that it contains.

A second class of problems where the P, term can be dropped is
when the volume V is specifically chosen in such a way as to make P.s
negligible. This case occurs, for example, when considering a thin Gaussian
pillbox, with area 4 and thickness d, that encloses charge o4 and
current element K 64 due to a surface charge o and surface current den-
sity K, respectively, on the surface of a perfectly conducting material. If Ep
and By, are fields from another source, then for d— 0, P, 5 indeed becomes
negligible. The right-hand side of Eq. (26) then allows another means of
calculating the Lorentz force per unit area due to, for example, an electro-
magnetic plane wave incident upon the plane surface of a perfectly con-
ducting material.

15 See the related interesting discussion by Lorentz in Ref. 18, Secs. 19-22.
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The third class of problems mentioned here involves charge and
current distributions that fluctuate with time, but in such a way that they
obey a stationary stochastic process in time. Then, (P,.x(2)) =(d/dr)
(P, n(2)> =0, where (P, ()} represents the expectation value of P, y(¢).
Equation (26) then holds, provided the expectation value brackets are
included on each term.

The right-hand side of Eq. (26), with the brackets included, has been
used in a number of articles?>2"»16 for calculating van der Waals forces
between parallel plates made of various materials, as well as between
polarizable particles. The articles listed in Refs. 19-27, however, used the
full Maxwell stress-energy tensor, rather than just the cross-terms, thereby
masking the immediate connection to the Lorentz force given by the expec-
tation value of Eq. (26). The additional terms that arise in using the full
expression are related to the Lorentz force of the charge distribution acting
upon itself. For the problems considered in these articles, one would expect
the average of these forces to be zero, since the charge distributions in
question are not undergoing a net acceleration (for example, the self-force
of a charged particle is zero unless the particle accelerates).

The connection can be made very clearly and easily between the
expectation value of Eq. (26) and the van der Waals forces calculated in
Refs. 25, 28, and 29. These calculations involve only classical physics, so
that Maxwell’s equations immediately apply. Here, nonrelativistic electric
dipole harmonic oscillators were considered that were situated in classical
electromagnetic zero-point radiation. These calculations were first carried
out for all distances between two oscillators‘®® and later extended to non-
zero temperatures @ and to N oscillators.®® The total Lorentz force on
an oscillator was calculated by summing the Lorentz forces due to (1) the
incident radiation fields, plus (2) the electromagnetic dipole fields due to
the other oscillators.!” Consequently, Eq. (26) can be immediately applied,
by taking any surface S that encloses only one of the oscillators. The cross
terms must be summed that arise between (1) the oscillator’s electro-
magnetic dipole fields and the incident fields, and (2) the oscillator’s dipole

16 Calculations of van der Waals forces using the Maxwell stress—energy tensor have been
carried out via semiclassical means for (1) dielectric plates in Refs. 19 and 20; (2) conduct-
ing plates in Ref. 21; and (3) polarizable particles at large distances in Ref. 22. The method
of calculating the Casimir force between conducting plates via the Maxwell stress—energy
tensor is discussed from a more traditional quantum electrodynamical viewpoint in Ref 23.
Also, calculations using the Maxwell stress—energy tensor have been carried out from an
entirely classical point of view by assuming that classical electromagnetic zero-point radia-
tion must be present. These classical calculations bave been worked out for (1) conducting
parallel plates in Ref 24 and 25, (2) dielectric parallel plates in Ref. 26, and (3) dielectric
and permeable paralle]l plates in Ref. 27.

17 See for example, Bq. (41) in Ref. 29.
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fields and the dipole fields of the other oscillators. A precise connection is
then obtained!® between the expectation value of the terms corresponding
to the right-hand side of Eq. (26) and the van der Waals force calculated
in Refs. 25, 28, and 29.

This work was used in Refs. 30 and 31 by combining the energy cross-
term relationship relationships with single-particle energy relationships, to
analyze the case of no heat flowing during a reversible displacement opera-
tion of harmonic dipole oscillators at absolute zero temperature. This
analysis enabled the derivation of the spectral form of classical electro-
magnetic zero-point radiation, from a purely classical electrodynamic
analysis.

Finally, the last application of the cross-term relationships discussed
here has interesting ties with the Aharonov-Bohm effect in quantum
mechanics. Reasoning similar to that in Ref. 7 was again used by Boyer in
Ref 8 to analyze the conservation of energy, linear momentum, and
angular momentum for a charged point particle passing a solenoid. As was
true in Ref, 7, the cross-term relationships of the present article are indeed
relevant for the analysis!® in Ref 8. An interesting application of these
results is the observation raised by Boyer® that just as a classical lag effect
will produce interference fringe shifts similar to those arising from the elec-
trostatic Aharonov—Bohm effect, so also may this arise in the solenoid
Aharonov-Bohm case. Experimental confirmation of the former case
exists,®? but experimental investigation of the latter has not yet been
carried out.

Thus, a classical explanation exists that appears to provide a shift in
the fringe patterns observed in the electrostatic and solenoid Aharonov-
Bohm experiments. As Boyer has emphasized, to ferret out whether the
fringe pattern shift observed in these experiments is due to this classical lag
effect, or to the quantum mechanical explanation by Aharanov and Bohm,
requires a very carefully controlled experimental setup. The cross-term rela-
tionships can be used in the analysis of this classical lag effect.’®

18 More specifically, let pa(x, 1) = —pa(?)- Vo(x —R,), and J(x, 1) =Pa(f) °(x —R,), be
the charge and current density, respectively, of the “A” labeled oscillator, which is treated
in the electric dipole limit and is located at position R,. Here, the electric dipole of the
A oscillator is given by pa(f) =ez,(z), where z,(z) is given by Eq. (40) in Ref. 29. For
]x—R,| >0, the retarded electromagnetic fields due to p, and J4 are given by Egs. (17)
and (23) in Ref. 29, which were the expressions used for the fields of the electric dipole
oscillators when calculating the van der Waals force in Eq. (41) in Ref. 29.

19 See, for example, Egs. (14), (15), (22), (38), (41), (49), and (56) in Ref. 8. These results may
be viewed as special cases of the cross-term relationships derived here.
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S. CONCLUDING REMARKS

Relationships were derived and discussed that involve the time-rate of
change of the cross terms that appear in the traditional expressions for the
electromagpetic energy, linear momentum, and angular momentum, when
two or more sources of electromagnetic fields are present. These rela-
tionships are valid for point charges, as well as for continuous charge and
current distributions, unlike the analogous theorems in electromagnetic
theory that involve the total fields. In a sense, the latter theorems (e.g.,
Poynting’s theorem) are special cases of the cross-term relationships
described here. [ The comments after Eq. (11) specify in what sense this
special case can be viewed. ]

Now these cross-term relationships are certainly not new; undoubtedly
many researchers have, at least privately, noted the validity of, for example,
Eq. (18). (Indeed, see Rowe in Ref. 16.) However, precisely how these rela-
tionships can be applied does appear to have been largely missed in the
literature. As a strong example, the momentum cross-term relationship
shows that Newton’s third law does not hold in general between two
charged particles; instead, the sum of the forces between the two particles
exactly equals the negative of the rate of change of the cross-term part of
the electromagnetic momentum carried by the fields of the particles. This
result has been noted by Page and Adams®™ ® to hold for terms up to order
1/¢* and by Boyer'” to hold exactly in the case where particles move at
constant velocity. However, from the cross-term relationship, this result
falls out exactly for the general case of arbitrary motion of the particles.

Many other problems in electromagnetism involving work, forces, and
torques can be carried out by using these relationships. In particular, when
systems of charged particles are involved, then the cross-term relationships
are useful as they provide the general rules that govern the sum of the rates
of work, the sum of the forces, and the sum of the torques, by the fields of
each particle acting upon the other particles.
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