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Classical Electrodynamic Systems Interacting with
Classical Electromagnetic Random Radiation

Daniel C. Cole'

Received March 3, 1989

In the past, a few researchers have presented arguments indicating that a statis-
tical equilibrium state of classical charged particles necessarily demands the
existence of a temperature-independent, incident classical electromagnetic random
radiation. Indeed, when classical electromagnetic zero-point radiation is included
in the analysis of problems with macroscopic boundaries, or in the analysis of
charged particles in linear force fields, then good agreement with nature is
obtained. In general, however, this agreement has not been found to hold for
charged particles bound in nonlinear force fields. The point is raised here that this
disagreement arising for nonlinear force fields may be a premature conclusion on
this classical theory for describing atomic systems, because past calculations have
not directed strict attention to electromagnetic interactions between charges. This
point is illustrated here by examining the classical hydrogen atom and showing
that this problem has still not been adequately solved.

1. INTRODUCTION

In order to gain a better understanding of the apparent split between the
behavior of classical systems and quantum mechanical systems, many
researchers have devoted considerable effort in the past to studying the
behavior of electrodynamic oscillator systems interacting with radiation.
Early in this century significant contributions to this subject were made by
Einstein!") and by Planck‘®; however, most physicists soon turned their
attention strictly to quantum mechanical systems.

During the past 25 years, some of the early classical work has been
reexamined due to the thought that possibly a key point may have been
missing in this early work: namely, the idea that at zero temperature, a
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nonzero classical electromagnetic radiation may be present that preserves
most of our usual ideas about thermodynamic behavior, but also yields the
observed nonzero fluctuating motion of particles at zero temperature.
Indeed, researchers”®) have speculated that the presence of this classical
electromagnetic zero-point (ZP) radiation may be the important factor that
provides stability to classical atomic systems, thereby resolving the classic
problem of collapse for a classical charged particle orbiting an oppositely
charged massive particle. Moreover, qualitative explanations for classical
systems, based on the idea that classical electromagnetic ZP radiation
must be present, have been proposed!”’ for such quantum mechanical
phenomena as tunneling, diffraction, interference, and the Heisenberg
uncertainty principle.

Clearly it is desirable to quantify such interesting speculations and to
address carefully the problem of the appropriate equilibrium behavior
between classical charged particles and classical electromagnetic radiation.
Consequently, a number of studies have been carried out over the past
14 years or so, involving the behavior of an oscillating charged point par-
ticle in a binding potential, acted upon by isotropic, homogeneous random
(Gaussian) radiation.®!®2% These studies were directed, in particular,
toward the effects of a nonlinear binding force upon an oscillating particle’s
(1) phase-space distribution,®!! 142021 (2} radiated and absorbed energy
characteristics, ®10-11:1415.17.2023.25)  apnd  (3) average energy.(!820:22:24.25)
Hydrogen-like systems were studied with special interest.(!>!416:17.19)

This theory of classical charged particles in the presence of classical
electromagnetic ZP radiation is often called stochastic electrodynamics
(SED).2 The conclusion that appears to have been reached by most
researchers® is that SED is a better approximation to quantum mechanics
(QM) than is classical physics without ZP radiation present, but that it
certainly does not come close to predicting the full quantum phenomena
for atomic systems that we actually observe in nature. In particular,
calculations performed to date predict that a classical model of hydrogen
in ZP radiation is not stable and must “ionize.”'®!®) Also, upon con-
sidering anharmonic oscillator potentials, incorrect changes in energy, as
compared with QM, have been predicted for such systems.!#20-2>24.2%)

In this article, I wish to raise a point that has been ignored in the
above calculations in SED. Accounting for this factor may significantly
alter the predicted results obtained so far in SED, possibly in such a way
as to bring it closer in agreement with nature.

* For reviews on SED, see Refs. 7, 8, and 26-28. An extended list of references on SED can
be found in Ref. 28.

3In particular, see Ref. 25, as well as Refs. 12, 16, 17, 19~21, and 23.
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Briefly, this point is that in all of the studies carried out to date, the
assumption has been made that in the small charge limit, a bound system
is obtained that consists of a particle oscillating under the action of a con-
servative potential that is independent of the value of the charge e. In this
limit of e - 0, no random driving forces act on the oscillating particle and
no electromagnetic energy is radiated by the oscillating particle. Hence, the
random radiation driving forces and the dissipative action of radiated
energy have been treated as effects that are small in the small charge limit.*

Certainly the above idea is a very reasonable one if the binding poten-
tial does not depend upon the charge. Blanco, Pesquera, and Santos (BPS)
have carried out lengthy calculations in two significant articles, ?'*® where
they claim that if the incident radiation consists of classical electromagnetic
Rayleigh-Jeans (RJ) radiation, then (1) the equilibrium behavior of an
oscillating charged point particle in a broad class of binding potentials
follows a Boltzmann distribution function, and (2) the spectrum of the
emitted radiation due to the oscillating charge is that appropriate for equi-
librium with a RJ spectrum. Thus, these results agree with what, for years,
most physicists have thought to be true. Moreover, these results are also
significant in that they were carried out by BPS for relativistic systems,
thereby removing the doubt® that a lack of a relativistic treatment in earlier
work may have resulted in the negative results obtained for SED.

Nevertheless, the above results may not be relevant for actual atomic
and molecular systems, since these calculations did not take into account
the fact that the binding force should be Coulombic in origin, and should
therefore depend upon the charge. Certainly all atomic systems (in par-
ticular, atoms made up of negatively charged electrons and positively
charged nuclei) consist of particles interacting via electromagnetic forces,
with charge values equal to an integer times +e. The conceptual difficulty
here is that in quantum mechanics, we are so used to dealing with har-
monic oscillators and perturbing potentials, such as anharmonic oscillator
terms, that it is easy to overlook the fact that such potentials all have their
origin from Coulombic potentials and must depend upon e in atomic
systems. If this fact is taken into account, then entirely different results
from BPS may be obtained for the equilibrium behavior between classical
charges and classical electromagnetic radiation. Moreover, as will be
indicated in this article, obtaining the correct equilibrium radiated energy
spectrum by a bound charge will not only require treating the binding force
as being Coulombic in origin, but will also require, as argued before by
Boyer,® that the oscillating charge be treated via relativistic dynamics.

* See, for example, Ref. 13, Egs. (1.3) and (3.5). Also see Ref. 21, Eq. (3.2), and the equations

at the top of p. 1260.
® See, in particular, Sec. VII in Ref. 10 and Sec. VI in Ref, 11.
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In the following section these ideas will be clarified by considering the
simplest atomic system in nature. A classical model of hydrogen immersed
in classical electromagnetic ZP radiation will be analyzed using relativistic
dynamics. This system will be used as a vehicle to indicate what I believe
to be important points to include when comparing predicted behavior of
classical atomic systems with the observed behavior of atomic systems in
nature.

2. A CLASSICAL TREATMENT OF HYDROGEN IN CLASSICAL
ELECTROMAGNETIC ZERO-POINT RADIATION

Consider a —e charged point particle with mass m, located at position
z(z), that is attracted by the electrostatic Coulombic binding force

o z(Y)
Fbinding—‘ —€ |z(t)|3 (1)

due to the presence of an infinitely massive +e charged point particle resid-
ing at the origin x = 0. Assume that the classical electromagnetic zero-point
radiation fields E,, and B,, are present.> The Lorentz—Dirac
equation® 32 describing the motion of the —e charge is then given by®

d’z* 2e? [d3z“ 1 (dzz’1 d221> dz“J

m = —————f{ — —] —
di* 33| di? A\ de? dit ) de
( - 8) v y dzv
+ ——C— [37 ginding + y;l’ —d? (2)
where F{} ., and F 4 represent the electromagnetic field contributions

due to the Coulombic binding potential and to the zero-point fields, respec-
tively.

By rewriting Eq. (2) in dimensionless units, we can expose all the inde-
pendent parameters that govern the solution. A natural unit of length that
should fall out of Lq. (2) is the classical radius of the electron r, = e?/mc?,
as this quantity is the only length unit that can be composed from the
“material” parameters, mc” and e, that describe the physical properties of
rest-energy (mass) and charge associated with the charged point particle.
Indeed, if we consider a problem involving relativistic mechanics and the
Coulomb potential, as occurs in the relativistic Kepler problem

1dz

d N2y z
— 1— = 2
mdt[( c dt > dtJ ¢ |z|? )

5 The following notation is used here: Greek indices take on values 0,1,2,3, a time-space
point is denoted by x* = (ct; x), and the metric is g =diag(—1,1,1,1).
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then only the parameters m, ¢, and e appear. Only the length r, can be con-
structed from these parameters.

The presence of the zero-point fields introduces Planck’s constant #
into the problem. As will be seen, the interaction of the zero-point fields
with the —e charge is governed by the dimensionless parameter of
Sommerfeld’s fine structure constant « = e*/fic. The entire dynamics of our
problem, as described by Eq. (2), is then parametrized by only the length
r, and the dimensionless parameter a.

The presence of the zero-point fields and the Coulombic binding force
should result in a stochastically varying orbital motion of the —e point
charge about z=0. If we were to find that the dynamical motion of
the particle obeyed a stationary stochastic process in time, then without
knowing anything else about the details of the motion, we would be forced
to conclude that the average amplitude of this oscillating motion was
governed by the sole length r, and the sole dimensionless parameter o that
appear in this problem. Hence, we would have a natural prescription for
finding the Bohr radius r,=r /o’ =#*/me* as the only expression having a
finite nonvanishing nonrelativistic limit when ¢ — co. Moreover, this simple
scenario also allows for other physical characteristic properties of the
relativistic particle’s orbit to be found at other length scales, such as the
Compton wavelength i =r,/a, and at time scales r./c, (r./a)/c (ie., i./c),
(r.Ja*)/c (ie., rg/c), and (r,/o*)/c (ie., inverse of the Bohr angular frequency).

Let us now turn to show that Eq. (2) may yield such a plausible result
by carrying out a simple dimensional analysis. The u=0 equation
associated with Eq.(2) may be deduced from the u=1,2,3 equations.
Dealing only with the latter three equations, and using Egs. (5.25)-(5.27) in
Ref. 30 to express all quantities in 3-vector form, we obtain

d, . 2ed[ ,. . [t
mz”’*sm[?”?’(?ﬂ

2 2 > b 2
!

_ezl—zzz({))?—eEZP(Z(t)’ t)_e'z‘(ci)@BZP(z(t)’ 1) (4)

Here, = dz/dt, i = d*z/dr? etc., and, as usual, y=[1— (2/c)*]~"2

To cast this equation into dimensionless form, we need to introduce a
normalization unit of length [,. Based upon the previous remarks, a
natural choice for I, is r,; for the moment, however, let us leave [,

unspecified. The natural choice to make for a normalization unit of time ¢,
in a relativistic theory is the unit connected to /, by the speed of light
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c: ty=1y/c. Hence, let x’ =x/l, and ¢’ = ct/l,. The term on the left-hand side
(LHS) of Eq. (4) can then be written in primed coordinates with an overall
factor of mc?/l,, while the first three terms on the RHS will appear in
primed coordinates with an overall factor of e/},

The remaining two terms in Eq.(4) contain the zero-point fields,
which we will now consider in more detail. Here, let us foilow the discus-
sion in, for example, Ref. 7, but we will need to deviate from the discussion
presented there when passing from the Fourier series representation of the
fields over to the Fourier integral representation in order to correct an
existing error in the literature.

If we consider a cubic region of space with side length L, then any
free fields in this volume can be expressed as a sum of plane waves, with
periodic boundary conditions imposed. This last condition is assumed here
for mathematical simplicity, since we are not attempting to describe the
fields outside this volume of space; eventually, we will let L — co. As usual,
the assumption will be made that the zero-point fieids obey a Gaussian
stochastic process and that they satisfy conditions of homogeneity and
isotropy in space. Demanding that their stochastic properties also be
Lorentz invariant results in their spectral energy density being uniquely
defined up to a multiplicative constant,**’ which we then select so as to
yield agreement with experiment (such as Casimir forces between metallic
parallel plates). Hence, we may write"-?®

3/2
Ezp(x, 1) Z Z ( ) hzp(w) €, ;costk-x—wt+6, ;) (5)
n A=12
2
Be(x, 1))=Y ¥ (”) hopl@) k@, ) costk - x—wi+6,,) (6)
n i=1,2
where
2n
k=fn, nen,n.={0,+1, +2,..} 7
én it én,/l’ - 5/1,) (8)
k én,,«_= (9)
fiw
[hZP(“’)]2=£3 (10)

The frequency w is defined by w=c |k|. The phase angle 6, , is assumed
here to be a random variable that takes on values between 0 and 2z with
uniform probability; 6, ; is assumed to be independently distributed for
each value of n and A.
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As described in Ref. 26 (also see Ref. 28), by writing
cos(k X — 1 + 6, ;) = 4, ;e TR R p g e x] (1)
where
a, ;= e (12)

we can write Eqgs. (5) and (6) in a form analogous to the fields in QED,
where a, ; and a ; have a close connection to the photon annihilation and
creation operators in QED. From the described probability distribution for
0,,, we obtain
<anl.ila:2,iz>=6n1.n25/11,A‘2 (13)
<an|.)h1an2,12>= <a:1,).1a:2,12>=0 (14)
where the angular brackets represent the operation of taking the expecta-

tion value.
To pass over to a Fourier series representation, let

372
a;ﬂ«)E(%) ans )

In these new variables, Eq. (14) remains in the same form, but

L 3
k) atke)) = (52 ) Suvasbin

z(sz(kl_kZ) 511,12 (16)

where the second line becomes an equality in the limit L — o0.”
Now making the usual substitution of

(%”)32...a,fd3k... (17)

n

7 More explicitly, consider Gk, k,)=(L/2n)} Gn,.n,- Obviously, if k; #k,, then G(k,, k,) =0.
Secondly, consider any arbitrary volume ¥, in k-space such that k, e V. Then,

L 3
1= % bmx| @k () 6
n; such that c

1€ Vi

where Eq. (17) was used. Hence, G(k,, k,) — 83(k, —k,) for L — 0.
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we obtain Egs. (5) and (6) in the form

‘v* 1 e ik - x iwt — ik - x
Erp(0)= T [ dkhzp(0) 8,00k 5 {a,k) e =% 4 ax(k) e )
A=1,2

(18)

1 I .
Brr(x,0)= T [dkhop(@)(R®,(K))3 {a,k)e ' +* 4 aF(k)er—x)
A=1,2 _
(19)

Equations (15)-(19) correct an annoying existing error in the
literature that has been repeated many times by a number of researchers,
including myself.* Surprisingly, this simple error has apparently never been
noted and corrected elsewhere in the literature, which is undoubtedly why
it continues to be made. Fortunately, however, the error does not effect
previous ensemble average calculations, but it needed to be corrected in
order to clarify the present dimensional analysis of Eq. (4).

We can now rewrite Egs. (18) and (19) in dimensionless coordinates
by letting k'’ = /ok and by writing

Ew(x )= ¥ [ d% (o) 8(K)

1(2),{=1,2
Xz{a;(k/)e—uut + ik’ x +ai*(k1)elwl—lk-x} (20)

8 The error being referred to was apparently first made in Ref. 5, and has been repeated ever
since in Boyer’s work, my own work, as well as in the work of several others (see, for
example, Refs. 9, 21, and 22). To clarify the situation, the expressions used in the past for
the zero-point fields of

172
Ezp(x, 1)=Y jd3k [%J £,(k) cos(k - x — ot + 0,(k)) (a)
A

ho |12
BZP(x,1)=Zfd3k 2_712:, (ﬁ®§1(k))cos(k~x—wt+6,1(k)) (b)
2

are incorrect, as can be seen immediately by noting the incorrect dimensions associated with
the above fields. Equations (a) and (b) above should be replaced by Egs. (18) and (19).
Likewise, expressions used in the past for ensemble averages involving the phases, such as

{cos(4 +8, (k) cos(B+8,,(k,))> = 83,.1,0°(ky~k,;) i cos(B— A4) (c)

are also incorrect, as can also be seen immediately by noting that the LHS of Eq. (c) is
dimensionless, while the RHS has the dimensions of (length)® due to 5*(k, —k,). Instead, the
transformation of Eq. (15) should be used, so that Eq. (16) is obtained. Fortunately, the
above two errors cancel each other out when computing ensemble averages involving
products of incident radiation fields.
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and similarly for B,p(x, ), where é;(k’) =£,(k), and

1
a;(k') = e a;(k) (21)

10 1/2
ool0)=(2)  hasle)

1 Cl)l 1/2 .
~on <2_> (22)

In Eq. (22), the fine structure constant « appears. Note that

(dy, (k) aiF(ky)) =0°(ki — k) 0, 5, (23)

If we combine the above results, Eq. (4) can now be written in dimen-
sionless coordinates,® with y= (1 —|2'|?)" V%

Ge)

) 2d
25 i) == {M [ 7% - 7)]
T 112
LR - s

1 o
=3 [ K hgp(0) 8K 5 [ak) e+ ¥ tec]

A

1 ot ik 7
—i/®§fd3k’h/zp(w’)(li’®é3(k'))5 [ay(k') e+ = +c.c.]}
| (24)

Thus, two dimensionless parameters appear in Eq. (24): (e*/mc?)/l,
and o (in hyp(w’)). Since the only length given to us prior to solving this
problem is the length r, associated with the material properties of the —e

9 Note that the Fourier series form of E,p and By in Egs. (5) and (6) can certainly still be
used here; however, an additional dimensionless parameter of (/,/L)*? will appear, which is
taken to be infinitesimally small here.
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charge, then /y=r, = e’/mc? seems a natural choice to make. Nevertheless,
there are other choices that one might want to consider, such as
lo=A.=r,/o or ly=rg=r /o> Regardless of which of these choices is
made, the above equation of motion for a classical hydrogen atom becomes
parametrized by only one constant: namely, the fine structure constant o,
which then appears in (e*/mc?)/l,, as well as in the (1/a)"? factor in the
hzp(w') part of the zero-point field terms.

If perturbation methods are appropriate for analyzing the solution to
Eq. (24), then clearly these methods should be based on the magnitude of
a, since o is the single dimensionless parameter remaining in the problem.
In the past, perturbation methods have been used by researchers when
trying to deduce the stochastic behavior of a charged point particle in a
nonlinear force field, while acted upon by classical electromagnetic random
radiation. The above hydrogen atom problem was one of these attempted
nonlinear force problems.!>!4!6!71) The assumptions made by these
researchers have generally been that!® (a) the incident radiation force terms
depended on Q, where Q was some small dimensionless parameter that was
usually stated as being proportional to e, (b) the radiation reaction terms
depended on @7, and (c) the binding force term could be treated in the per-
turbation analysis as being independent of . Thus, the terms (a) and (b)
were treated as though they were perturbation terms in the equation of
motion.

Certainly Eq. (24), as it stands, does not follow the assumptions just
mentioned, regardless of the choice for /,. Moreover, suppose the choice is
not made that ct, and /; are equal, but rather that /, and cz, differ by some
power of «. Then neither the radiation reaction terms nor the ZP force
terms will be simply proportional to some power of «, but will depend
upon o in a more complicated manner. Consequently, assumptions (a) and
(b) cannot possibly be satisfied under this condition.

In order to clarify fully this point, one particular choice of normaliza-
tion units is worth mentioning. If /y=r, and cty=r s/®, then the equation
of motion comes closest to following the assumptions of (a, b, ¢), but with
Q=02 To see this result quickly from Eq. (24), first let ly=rpla (=cty),
and then let z’=az”. One obtains

' References 8, 11-16, 19-21, and 23 all use an “approximate” Fokker—Planck equation
approach. Clearly, Refs. 13, 21, and 23 use precisely the classification (a, b, c) of the pertur-
bation terms as described here. Although not all of the other references use quite this
classification, supposedly all the methods are equivalent in the small charge limit: see
Ref. (12b) and, in particular, the unpublished work by Pesquera and Claverie cited in
Ref. 21 as Ref. 19.
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d ([ dz"\ _ -z" ., ﬂ'w’)“z N
- i d3k/ . k/
dt/ (y dt/) |z//|3 & Z J <2TE2 84( )

/

-1
X3 {ai(k') exp[ —i(w't' —ak’-2")] +cc.}

” 172
Loy [k (”“’) (k' ®&,(k))

xi{a’z(k’) exp[ —i(w't’ —ak®-z")] +cc.}

LA e (0 4
%3 " v v \ dt' dt?
2 d2 "\ 2 5 dzu dzzu 2 dz//
—w3]7 ( > v (W'WHW (23)
where
dz// 21-172
= 1— 2 —
y [ . d,,} (26)
2 == (27)
¥
t
= (28)
((rg/c)/a)

Note that although the form of the resulting equation involving z” and
t' is close to the assumed (a, b, ¢) form, there are significant differences. For
an explicit comparison, consider the nonrelativistic equation of motion
assumed in Ref. 14 (Eq. 3.1) for tackling this classical hydrogen problem:
2 2
mi= —e —— — ¢Eyp(0, 1)+ = =1 (29)
|z| 3¢
Substituting in Eq. (18), and using the same normalization units of the
Bohr radius and the inverse of the Bohr angular frequency as in Egs. (27)
and (28), we obtain

dzz// z/l dSZu
dtrZ =- 'z//

N 172 1 o
BLpY Jax (’%) £(k) 3 (k) e +ee}  (30)

Thus, this assumed equation does follow assumptions (a, b, c),
provided €2 is identified as «*? However, upon comparing Eq. (30) with
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the above Lorentz-Dirac equation of Eq. (25), where both equations are
normalized in the same way, we see that Eq. (30) is missing terms that
cannot be justified simply on the basis of the magnitude of «. Indeed, the
second line of Eq. (25) is of order «*?, but it has been neglected in Eq. (30)
despite the inclusion in Eq. (30) of the radiation reaction term of order o?.
Likewise, if we expand y in the term on the LHS of Eq. (25) via

2 4

1
')/=1+§(X

dZH

dr’

dz"
dr’

2 4

(31)

+§oc
8

we see that the first-order correction term is of order o yet this term is
missing in Eq. (30).

Moreover, it does not seem at all obvious that one can justify the
dipole approximation in Eq. (30) consisting of neglecting the ak’-z” term
in the argument of the ZP fields; the approximation may very well produce
an error of significance. For example, if we naively rewrite the last term in
the first line in Eq. (25) by making a Taylor’s expansion in the spatial
argument, then we obtain

7

how

172 1 L
_a3/2 Z Jdak/ <ﬁ) s:l(kl)i {aﬁ(k')e"w’[l +iock’-z"+ ]+CC}

The first term in the expansion represents the dipole approximation and
appears with an overall factor of a*?, while the next term in the expansion
contains a factor of «*. Neglecting this «*? term in Eq. (30) does not
appear consistent with retaining the radiation reaction term of order «>.

Unfortunately, previous research'>!*!¢!% on the classical hydrogen
atom in classical electromagnetic ZP radiation has been based on an equa-
tion of motion that is either identical or else very similar in form to
Eq. (29). As can be seen from the above comments, Eq.(29) certainly
appears to be an inconsistent and inaccurate approximation to the full
equation of motion. Consequently, the previous analysis reported*® that
the classical hydrogen atom in ZP radiation will result in the self-ionization
of the electron must be viewed as being unsupported at the present time.

Before leaving our discussion of the hydrogen atom to make a few
comments about how the above ideas carry over to other atomic systems,
let us briefly discuss how Eq. (24) generalizes to the case where the tem-
perature 7 is nonvanishing.

When T#0, an additional parameter enters into Eq. (24). Here, zero-
point plus Planckian (ZPP) radiation must be considered,!' so the fields

! See, for example, Refs. 26 or 28.
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Ezp and B,p need to be changed to Ezpp and Bypp. Equations (20) and
(24) then change by simply replacing 4%p(w’) by

INY?T Ao fiw \7Y7?
hypp(') = <e—‘;> [ﬁ coth <m>]

1 N\ 172 ' 1/2
S ] e

[

where

Thus, for the ZPP case, an extra factor of

[coth <a2)_;ﬁ_>i|”2

must be included in the integrands of the last two terms in Eq. (24). Hence,
B becomes the additional dimensionless factor that parametrizes the equa-
tion of motion in the nonzero-temperature case. If [, = (e*/mc?)(1/a"), for
some value of n, then = (mc?/kT)a". Hence, in a very natural way, the
ratio of the rest energy to kT becomes the additional parameter of impor-
tance, aside from a, for the nonzero temperature case.

For completeness and for future use, it is of some interest to indicate
how Eq. (24) changes if the incident classical electromagnetic radiation is
assumed to have the traditional Rayleigh-Jeans spectrum.'> Now Egs. (20)
and (24) change by replacing 4%p(w’) by

L\ TETT? 1 1
mito)=(8) | =] =15 (34)

Hence, f enters in here as well, which will be helpful in making com-
parisons between the ZPP and RJ cases for the physical behavior of the
oscillating charge. Of course, here the only reasonable choice for /, is where
ly=r,, since o cannot enter the problem in the RJ case. For this choice,
B = (mc?/kT).

2 For an interesting recent comparison of the physical behavior of (1) a classical anharmonic
oscillator in the presence of ZPP radiation, as well as RJ radiation, to (2) a quantum
mechanical anharmonic oscillator, see Ref. 25. Note, however, that the assumption is made
here that the binding force does not depend upon the charge.
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3. CONCLUDING REMARKS

If classical electrodynamics with classical electromagnetic ZP radiation
does correctly describe nature at some level of physics, then the most likely
level for this connection is within the domain of atomic and molecular
physics. Here, electrodynamic interactions are clearly dominant. At physi-
cal dimensions of smaller and larger scale than the atomic domain, the
strong, weak, and gravitational interactions become important. No serious
attempt has yet been made in the literature to extend stochastic electro-
dynamics to these areas of physics.

The interactions in atomic and molecular physics occur between
molecules, atoms, electrons and nuclei, electrons and positrons, etc. These
interactions obey the well-defined rules of electromagnetic theory. Any
comparisons between (1) the predicted behavior of the theory of classical
electrodynamics with classical electromagnetic ZP radiation, and (2) the
observed behavior of real atomic systems must pay strict attention to this
interaction; any perturbation analysis must be based closely upon the
magnitude of the physical parameters governing the interaction.

In this article, the classical hydrogen atom in classical electromagnetic
ZP radiation was shown to be parametrized in a very natural way by only
one dimensionless parameter: a=e?/fic. If a more complicated atomic
system is considered, such as a many-electron atom, then the Lorentz force
due to each electron acting on the other ones must be included in the
Lorentz-Dirac equation of motion for each electron. These Lorentz forces
involve the retarded electromagnetic fields associated with each electron:

 TR=RPI-FY] L (—)[RE{R-RP)®P)
E(x”)‘(‘e)[ R-R.p) ]f c [ (R_R P ] (33)
B(x, t)=[%] ®E(x, 1) (36)

where R(1)=x —z(z), B=1/c, and 7, =t— R. Using the same reasoning as
for the one-electron atom, one can show that «, as well as Z, where +Ze
is the charge on the nucleus, arise as the sole dimensionless parameters
governing the n-electron atom at temperature T=0.

Unfortunately, the perturbation analyses that have been carried out in
the past on the stochastic behavior of oscillating bound classical charges,
have not treated the binding force as being dependent upon the charge, or
at least not in a consistent way. Consequently, the conclusions of these
studies do not apply to molecular and atomic systems, where the binding
forces are completely electromagnetic in origin. Indeed, past research in
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SED has largely missed the connection that the fine structure constant a
falls out as the fundamental parameter of importance for such systems.

To see what can go wrong if the above idea is not taken into account,
consider the following system that has been considered numerous times
within SED: namely, a point charge oscillating about the center of an
arbitrarily assumed anharmonic oscillator potential. Assume this potential
is not electromagnetic in origin. Now the assumptions discussed in Sec. 2
can be made, where the incident radiation force terms and the radiation
reaction terms are proportional to e’ and e respectively, while the binding
force is independent of e. A perturbation expansion scheme in the charge
e then results that conflicts with what should be used for actual atomic
systems. The predicted result from this analysis may very well be (1) a
Boltzmann equilibrium distribution in phase space for the oscillating par-
ticle, and (2) an equilibrium incident radiation field with a RJ spectrum,
precisely as has been envisioned by physicists for years, and as has been
recently analyzed in detail by BPS.(?1?%

However, the anharmonic oscillators that arise in atomic systems,
such as the diatomic molecule, and the ones that would be taken seriously
within the domain of QED, are ones that have binding potentials due to
electromagnetic charges. Consequently, such a system should nor be treated
via the perturbation scheme indicated above. Consequently, the conclu-
sions mentioned above that have been reached by other researchers on the
equilibrium behavior of oscillating classical charged particles and classical
electromagnetic incident radiation, are not applicable for atomic systems, or,
at the very least, have not yet been demonstrated to hold for such systems.

Hence, the correct equilibrium behavior for such classical electro-
dynamic systems still remains an open question in physics. Only upon
resolving this question can a close comparison be carried out between SED
and the observed behavior of atomic and molecular physical systems.
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