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Abstract

Previously unexplored resonance conditions are shown to exist for the classical hydrogen atomic

system, where the electron is treated as a classical charged point particle following the nonrelativis-

tic Lorentz-Dirac equation of motion about a stationary nucleus of opposite charge. For circularly

polarized (CP) light directed normal to the orbit, very pronounced subharmonic resonance behav-

ior is shown to occur with a variety of interesting properties. In particular, only if the amplitude of

the CP light exceeds a critical value, will the resonance continue without radius and energy decay.

A perturbation analysis is carried out to illustrate the main features of the behavior. The present

phenomena adds to a growing list of other nonlinear dynamical behaviors of this simple system,

that may well be important for more deeply understanding classical and quantum connections.
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I. INTRODUCTION

This article investigates a set of very pronounced subharmonic resonance behaviors for

the classical hydrogen atomic system. Other nonlinear behaviors of this system have been

discussed in relatively recent articles [1], [2], [3], [4], [5]. As described in these articles,

this classical hydrogen atom is of interest for several reasons, particularly the following: (1)

For large radii, with classical electromagnetic zero-point (ZP) radiation included, then this

system should well describe the Rydberg atomic system, with possible distinct advantages

in terms of simulation time for modeling its behavior. Such modelling may well be helpful

in terms of engineering manipulations of Rydberg systems, such as for ionization control

and chemical reaction control. (2) The mathematical nature of this very nonlinear system

exhibits a number of interesting behaviors and forms an interesting test for examining con-

nections between quantum and classical chaotic analyses. (3) This system is of keen interest

in the physical theory called stochastic electrodynamics (SED) [6],[7], where it appears that

this physical system, combined with the influence of classical electromagnetic zero-point ra-

diation, has a close connection with the predictions of quantum mechanics, at least for the

ground state of hydrogen [5]. Much more needs to be investigated regarding the latter to

see how far this connection reaches, or ends. However, clearly, the classical electromagnetic

radiation spectrum does act to provide a significant stabilizing influence on the otherwise

classical problem of collapse for the hydrogen atom. Many of these points are discussed in

more detail in Refs. [1]-[5] and so will not be elaborated on much further here.

The present article continues the investigation of some of the interesting nonlinear dy-

namics of this classical hydrogen system, but focusses on nonlinear subharmonic resonance

conditions. To our knowledge, such considerations have not been investigated elsewhere.

However, we do note that there are suggestive connections between what is reported here

and experimental work [8], [9], [10] involving applied microwaves perturbing atomic Ryd-

berg systems, where it has been found experimentally that both ionization and stabilization

effects depend on many critical factors. In particular, these factors involve the ratio of

the applied microwave signal to the classical Keplerian frequency of the Rydberg orbit, and

the strength of the microwave signal. Such effects fall readily out of our classical analysis

described here. Our belief is that a full connection between what is reported here, and

what is observed experimentally, will in addition require taking into account quantum me-
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chanical effects, possibly by folding in the classical electromagnetic zero-point radiation as

done in stochastic electrodynamics [6], [7], [5]. Nevertheless, it is certainly gratifying to see

that even without such considerations, one qualitatively sees experimental effects such as

reported in [10] arise quite naturally in the classical context, as predicted in Refs. [1], [2],

[3], [4].

The trajectory of a classical electron will be treated here via the nonrelativistic Lorentz-

Dirac equation [11] of:

m
d2z

dt2
= −e2 z|z|3 +

2e2

3c3
d3z

dt3
− eE [z (t) , t]− e

c

dz

dt
×B [z (t) , t] , (1)

where m is the mass of the classical electron, −e is its charge, c is the speed of light,
−e2 z

|z|3 is the Coulombic binding force, −2e
2

3c3
d3z
dt3

is the nonrelativistic radiation reaction

term, and E [z (t) , t] and B [z (t) , t] are electric and magnetic fields acting on the system.

When E [z (t) , t] = B [z (t) , t] = 0, then we have the dilemma noted by physicists after

Rutherford’s proposed solar system type model of the atom, that each orbit of the electron

will slowly, but constantly, keep radiating electromagnetic energy, leading to the collapse of

the atom. For an initial circular orbit of 0.5 Å, the time for full decay is about 1.3×10−11 s.
However, when this classical atom interacts with applied electromagnetic radiation, such as

circularly polarized light in the case of an initial circular orbit [1], or an infinite set of plane

waves with frequencies that are harmonics of the orbit in the case of an initial elliptical orbit

[2], then very dramatic resonance conditions can be achieved that result in a considerable

range of nondecaying states for longer period of times, although, in general, decay does set in

[3], [4]. Finally, when this system interacts with classical electromagnetic zero-point (ZP)

radiation, then not only does a stochastic, but stable, pattern of fluctuating orbits arise,

but indications are that the pattern comes close to that predicted by quantum mechanics

[5],[4]. It should be noted that this behavior is not unexpected in many ways, since classical

electromagnetic ZP radiation has a number of important properties that have led a relatively

small number of researchers to expect the simulated ground state behavior to occur [6]. In

particular, classical electromagnetic ZP radiation possesses the natural properties expected

of a thermodynamic equilibrium spectrum at temperature T = 0, including a form of Lorentz

invariance [12],[6] and the property that no heat flows during reversible processes for systems

examined in detail to date [13],[7],[14].

What will be examined here is the situation where the classical electron begins in a
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circular orbit, with a circularly polarized (CP) plane wave propagating normal to the plane

of the orbit, similar to what was considered in Ref. [1]. However, now instead of considering

the CP plane wave with a frequency the same as the initial orbit, here we consider the case

where the angular frequency of the CP wave is a factor of n times the orbital frequency.

As will be shown, a dramatic resonance-like behavior arises. Although such subharmonic

resonance conditions are well known to exist for one dimensional (1D) nonlinear oscillator

systems [15], the specific behaviors of this particular 2D nonlinear oscillator-like system are

most interesting. Here we bring out some of the main features and relate some of the

characteristics to a perturbation analysis.

Undoubtedly most researchers who read this work will find the subharmonic resonance

behavior reported here most curious and unusual, since it is likely that the classical hydrogen

atom has long been expected to yield little of interest. Clearly, though, such is not the case.

Nevertheless, these same researchers may wonder why emphasis has been placed on near

circular orbits in Refs. [1], [3], [4], and in the present article. Reference [2] did address near

elliptical orbits, but even here, the full class of possible orbits is clearly highly restricted.

The reason for these restrictions is simply to gain insight. At present, we do not know

how to handle the general orbital case, nor know what to expect in terms of unusual and

interesting properties. Analysis of near circular and near elliptical orbits can be carried

out. We expect that many of the properties shown here, and elsewhere for near circular

orbits, to carry over in a generalized fashion to near-elliptical, just as occurred for Refs. [1]

and [2]. Still, this remains to be shown, as does the case for yet more general orbits. One

needs to start analyzing the system somewhere, which is what the present work attempts to

accomplish.

The outline of the article is the following. First, in Sec. II, we illustrate some of

the main features of the subharmonic resonances that we have uncovered by the use of

numerical simulation experiments. After displaying a plethora of these general features,

we then turn to a perturbation analysis in Sec. III that helps to gain some insight into the

general behaviors seen in the previous section. Section IV then turns to a simulation study

on the very delicate balance that occurs when the amplitude of the CP plane wave is just

sufficiently large to enable a subharmonic resonance condition to take place. Finally, Sec.

V contains some concluding remarks on this work.
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II. NUMERICAL DEMONSTRATIONS OF SUBHARMONIC NONLINEARRES-

ONANCE BEHAVIOR

We now turn to an examination of subharmonic resonances, where the electron begins

in an initial circular orbit of radius rn, n = 2, 3, ..., with a CP plane wave of an angular

frequency that corresponds to the angular frequency of the classical electron if it was to

follow a circular orbit of smaller radius, that we will designate as r1. To make this more

clear, we know from classical nonrelativistic mechanics, if a particle of mass m follows a

circular orbit of radius r under the sole influence of the Coulombic binding force of −e2/r2,
then frommω2r = e2/r2, the angular frequency of this orbit of radius r will be ω =

³
e2

mr3

´1/2
.

In the previous work of [1], [3], and [4], this was the situation examined, where in addition

a CP plane wave also acted with this same angular frequency to perturb the motion.

Now we will consider initial circular orbits of radius rn > r1, where the angular velocity

of the circular orbit of radius rn is

ωn =

µ
e2

mr3n

¶1/2
=

ω1
n

, (2)

so that ω1 = nωn. Consequently, from Eq. (2), the relation between r1 and rn is given by

rn = r1n
2/3. (3)

The relationship of ω1 = nωn, constitutes the origin of our terminology of “subharmonic”

resonance behavior, which corresponds to the terminology used in nonlinear dynamics where

very extensive studies have been carried out, particularly for 1D nonlinear oscillators (see,

for example, [15]). We will shortly look at a wide variety of instances where the classical

electron begins in a circular orbit of radius rn = r1n
2/3, but with a CP plane wave acting

on the orbit, not with the angular frequency ωn, but with the angular frequency ω1 = nωn.

As in our previous studies, we still confine ourselves to motion of the orbit in a single plane,

with nonrelativistic dynamics, and with the CP plane wave directed normal to the plane of

the orbit.

Perhaps one of the best ways to first illustrate the dramatic effect of this subharmonic

driven motion is to start the electron in a fairly large circular orbit, allow it to decay in its

orbit by the usual classical nonrelativistic radiation reaction term of 2e
2

3c3
d3z
dt3
= 2e2

3c3
d
dt

³
d2z
dt2

´
≈

2e2

3c3
d
dt

³
− e2z

m|z|3
´
, and the whole time have a CP plane wave acting with angular frequency

ω1.
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In the simulations about to be shown, the following equations of motion were used, as

written in polar coordinates of r and θ:

r̈ − rθ̇2 = − e2

mr2
+
2τe2

m

ṙ

r3
+

eA

m
sin (θ − ω1t− α) , (4)

and

rθ̈ + 2ṙθ̇ = −τe
2

m

θ̇

r2
+

eA

m
cos (θ − ω1t− α) , (5)

where α is an phase factor between the initial electric field direction of the CP plane wave

and the velocity direction of the classical electron. When r = rn, and with ωn =
³

e2

mr3n

´1/2
,

then the first term on the right in Eq. (4) becomes

e2

m (rn)
2 = ω2nrn ,

with ωn =
ω1
n
, which is the main source of the subharmonic resonance behavior we will be

examining.

In Fig. 1(a), the classical electron was started in a circular orbit of 2 Å, with a CP plane

wave acting with a much higher angular frequency, that corresponds to an electron going

in a circular orbit of radius 0.5 Å. Figure 1(a) shows radius, r, versus time, t, for a set

of numerical experiments where the classical electron was in each case started at r = 2 Å,

but where CP plane waves of different amplitudes were acting, ranging, as shown, from

10 to 5000 statvolt. When resonance occurred, which happened for values of 100 statvolt

. A, the envelope of the r vs. t curves became very similar, with only the details of the

behavior inside the envelope changing substantially, and with the time to decay also varying

depending on the value of A. The horizontal line labelled as r2 has the numerical value

here of 0.5 Å×22/3 = 0.7937 Å. As can be seen, the envelope of the resonance curves are

roughly centered around this value. Figure 1(b) zooms in on the two curves for A = 10

and A = 50 statvolt. Prior to decaying to the r2 = 0.7937 Å value, these two curves are

very similar; after that, a slight resonance can be seen to begin for the A = 50 statvolt case,

which is superimposed over the much thinner A = 10 statvolt curve.
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Figure 1(a). r vs. t for for six numerical simulation conditions are shown here, namely,

with A = 10, 50, 100, 500, 1000, and 5000 statvolt, all with α = 0 and ω1 = e/ (mr31)
1/2 ≈

4.50×1016 s in Eqs. (4) and (5), with r1 = 0.5 Å. In each case, the classical electron began in
a circular orbit at r = 2 Å. Upon decaying in orbit, strong examples of resonance occurred

for A & 100 statvolt when the decaying radius reached near r2 = r1 × 22/3 ≈ 0.7937 Å. The
envelopes of the curves are remarkably similar, with the most obvious distinction being the

times at which orbital decay again sets in.

Figure 1(b). Here Fig. 1(a) is zoomed in on for the two curves of A = 10 and A = 50

statvolt to show that even for A = 50 statvolt, there is a slight sign of resonance near
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r2 = 0.7937 Å value, although not enough to delay the time of orbital decay.

Figure 1(c). Here nine simulation conditions are shown, all with the electron starting

in a circular orbit at r = 0.7937 Å. The amplitude A is increased up to 100,000 statvolt,

enough to change the envelope of the curve more substantially and to lead to an ionization-

like effect, rather than orbital decay.

Thus, if the amplitude of the applied CP wave is too small, such as 10 or 50 statvolt, then

the orbital decay occurs fairly similarly to what happens if no CP plane acts on the electron

[1]. Of course, there are small differences in these curves even for such small CP amplitudes,

particularly when the decaying orbit reaches r2, as illustrated in Fig. 1(b). However, the

differences in these curves is enormously small compared to what happens in the resonance

situations.

When A & 100 statvolt for this particular example, then very dramatic differences occur
when the decaying orbit reaches the r2 radius. First, a significant delay in decay occurs.

Second, the envelope of the oscillations of r vs. t undergoes a dramatic change, with the

radius centered roughly around r2 = 0.5×22/3 Å ≈ 0.7937 Å , but varying within an envelope
from about 1.24 Å to 0.36 Å. What is also most interesting is that once a threshold value of

A is exceeded, then the ensuing wide envelope curves become very similar, as can be seen in

Fig. 1(a), whether one uses A = 100, 500, 1000, or 5000 statvolt. As will be noted shortly,
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however, the inner details of the behavior between these envelopes is certainly different.

However, from just looking at Fig. 1(a), the main obvious distinction between these curves

is the time at which the resonance envelope curve is “broken” and orbital decay eventually

takes place. Moreover, if A is increased a great deal, as in Fig. 1(c), then we see a transition

from orbital decay to one of “ionization,” occurring here when A = 100, 000 statvolt. As

can be seen, what is most curious is that as A increases, the time to decay initially becomes

longer and longer (A = 10 → 500 statvolt), then decreases (500 → 10, 000 statvolt), then

increases again (10, 000 → 50, 000 statvolt). Some indications of the peculiarities of these

behaviors of resonance and decay can be seen in previous work for the ω/1 resonance case,

such as Refs. [2],[4], although previously we have not published results going to high enough

values of A where ionization could set in, nor examined the ω/2 subharmonic resonance

case. Upon increasing up to 100, 000 statvolt in Fig. 1(c), an ionization effect can be seen.

It should be noted that although 100,000 statvolt is certainly very large, the magnitude of

the Coulombic electric field at r = 0.5 Å is e/r2 ≈ 1.92×107 statvolt, which is still 192 times
larger than the applied field in this numerical experiment.

If one probes the inner details of the r vs. t behaviors, rather than looking only at

envelopes of the curves and the points at which either orbital decay or ionization sets in,

then additional complex and interesting characteristics appear that look much like “beat”

phenomena in the fluctuating orbital quantities. For example, if we consider Fig. 1, and this

time do not “drop” the electron from a higher radius, but instead simply start the electron

at the r2 point, and if we zoom in further on the time scale to see more of the details of the

r vs. t behavior for different values of A, then plots as shown in Figs. 2(a) and 2(b) result.

These figures show how the envelopes that appear in Fig. 1(a) are actually composed of

many smaller envelopes, that form “beat-like” patterns. Upon zooming in further in either

of Figs. 2(a) or 2(b), we see the result shown in Fig. 2(c), that compares the early time

evolution of Figs. 2(a) and 2(b). In Fig. 2(c), the radius first starts in a near circular orbit,

but then begins spiralling in and out. We will analyze this behavior in some detail in the

next section using a perturbation analysis. The peaks and valleys of the curves in Fig. 2(a)

and 2(b) superimpose to form the grosser envelope curve shown in Fig. 1(a), with only slight

differences in the overall outer envelopes. As A increases, the time distance between these

peaks of valleys, of this apparent ‘beat-like” behavior, become closer and closer together.

9



Figure 2(a). r vs. t when A = 200 statvolt and the classical electron begins a circular

orbit at r2 = r1 × 22/3 ≈ 0.7937 Å. As in Fig. 1, α = 0 and ω1 = e/ (mr31)
1/2 in Eqs. (4)

and (5), with r1 = 0.5 Å.

Figure 2(b). Similar trajectories are shown here when A = 500 and 1000 statvolt. As

A increases, the time difference between the peaks and valleys of the envelope curve become

closer together. At the grosser scale of Fig. 1, the envelopes shown here appear to merge.
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Figure 2(c). Here, the three curves in Figs. 2(a) and 2(b) are zoomed in on to show

the finer detail. The time between peaks is roughly the period of a nearly circular orbit at

the radius of 0.7937 Å, namely, 2π
ω2
≈ 2π×2

4.5×1016 ≈ 2.79× 10−16 s.

Similarly, the higher order ω/n resonance conditions exhibit a plethora of interesting

“beat-like” behaviors, as illustrated below in Fig. 3(a) for the ω/3 situation (r1 = 0.5 Å and

r3 = r1 × 32/3 = 1.040 Å), and in Fig. 3(b) for the ω/4 (r4 = r1 × 42/3 = 1.260 Å) case for
several values of A large enough to cause the respective ω/3 and ω/4 resonance conditions.

Figure 3(c) shows the early time evolution for the ω/3 case in Fig. 3(a), while Fig. 3(b)

shows the early time evolution for the ω/4 case. The three curves in Figs. 3(c) and 3(d) are

very close in character at the zoomed in early time regions, having only a very slight wiggle

(note the y-axis dimensions). In Fig. 3(d), the three curves are essentially indistinguishable.

What is also quite remarkable, is the very sharp turn-on characteristic for many of these

resonance-like behaviors. This can be seen quite dramatically in Fig. 3(e), where just a

slight change in the value of A leads to a much longer sustained resonance effect. As seen

in Figs. 3(c) and 3(e), the radius at the ω/3 resonance point initially decreases, before

curving back up for the A = 11, 977 statvolt case with the envelope greatly widening, while

the center of the A = 11, 976 statvolt case continues to decrease in value. Increasing the

value of A yet further for the ω/3 leads to ionization like effects, as seen in Fig. 3(f) for

the ω/3. The envelopes of the curves behave in a similar manner to the ω/2 subharmonic
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resonance condition already discussed, where the outer envelopes change somewhat, but

not too dramatically as A changes, but the time to orbital decay and/or ionization is very

sensitively dependent on the value of A.

It should be noted that the time between peaks in the most detailed of these curves,

namely, Figs. 3(c) and 3(d), represent the time for each orbit, namely, 2π
ω3
≈ 2π×3

4.5×1016 ≈
4.19× 10−16 s, and 2π

ω4
≈ 2π×4

4.5×1016 ≈ 5.59× 10−16 s, respectively. In Sec. IV, we show this in
more detail by emphasizing the energy versus time curves, that help to show greater insight

into the resonance.

Figure 3(a). r vs. t when A = 14, 000, 15,000, and 16,000 statvolt, and the classical

electron begins a circular orbit at the ω/3 subharmonic resonance point of r3 = r1 × 32/3 ≈
1.040 Å. The conditions of α = 0 and ω1 = e/ (mr31)

1/2, with r1 = 0.5 Å in Eqs. (4) and (5)

were used.
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Figure 3(b). r vs. t when A = 148, 000, 150,000, and 152,000 statvolt, and the classical

electron begins a circular orbit at the ω/4 subharmonic resonance point of r4 = r1 × 32/3 ≈
1.260 Å, when α = 0, ω1 = e/ (mr31)

1/2, and r1 = 0.5 Å in Eqs. (4) and (5) were used.

Figure 3c. Fig. 3(a) is zoomed in on at the early time period. The distance between

peaks is roughly the period of a circular orbit at r3 = 1.040 Å, namely, 2π
ω3
≈ 2π×3

4.5×1016 ≈
4.89× 10−16 s .
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Figure 3d. Fig. 3(b) is zoomed in on at the early time period. The distance be-

tween peaks is roughly the period of a circular orbit at r4 = 1.260 Å, namely, 2π
ω4
≈

2π×4
4.5×1016 ≈ 5.59 × 10−16 s. The three curves are nearly indistinguishable in this plot.

Figure 3(e). r vs. t is shown for two very slightly different conditions, A = 11, 976

and A = 11, 977 statvolt, for the ω/3 subharmonic resonance condition, where the classical

electron starts in a circular orbit at r3 ≈ 1.040 Å, with α = 0, ω1 = e/ (mr31)
1/2, and

r1 = 0.5 Å. With only a very small relative change in A, a very considerable change in
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resonant behavior results.

Figure 3(f). r vs. t for the same ω/3 case as in Figs. 3(a), (c), and (e), but now A is

increased large enough for ionization effects to occur.

In Figs. 3(a)-(g), the value of r1 = 0.5 Å was used, which translated into resonance

conditions at ω3 = ω1
3
, r3 = r1 × 32/3 = 1.040 Å, and ω4 =

ω1
4
, r4 = r1 × 42/3 = 1.260 Å .

Thus, increasingly higher values of A are required to make these resonances occur for the

n = 1 case (Acrit ≈ 5.4 statvolt), n = 2 case (Acrit ≈ 105.7 statvolt), n = 3 case (A ≈ 11, 977
statvolt), and n = 4 case (Acrit ≈ 147, 120 statvolt), as seen in the histogram of these values
in Fig. 4(a).

15



Figure 4(a). A histogram is shown of the values of Acrit needed to obtain the resonance

points of n = 1, 2, 3, and 4. In each case, α = 0, r1 = 0.5 Å, and the particle was started in

a circular orbit at the respective radii of r1, r2 = r12
2/3, r3 = r13

2/3, and r4 = r14
2/3, using

Eqs. (4) and (5).

In contrast, if we look only at a single resonance condition, such as the ω/2 case, and look

at different values of r2 versus the critical value of Ac where resonance sets in, we obtain a

plot as shown in Fig. 4(b). Here, as the radius is increased at which the ω/2 resonance

occurs, the critical value of A needed to ensure resonance decreases in value. Figure 4(c)

plots r vs. t for the first four of these points, and Fig. 4(d) shows an enlarged view of r vs.

t for the first two of these resonant conditions. The center lines indicated in Figs. 4(c) and

4(d) are the values of r2 corresponding to the values of r2 in Fig. 4(b). Finally, Fig. 4(e)

plots the data in Fig. 4(b) as log10(Ac) vs. log10 (r2), and compares the data versus a curve

with (r2)
−7/2 dependence. As can be seen, there is a fairly close correspondence over the

regime examined.

The reason for expecting a (r2)
−7/2 dependence can be understood from Eq. (1). If we

let z = l0r
0, and t = t0t

0, so that r0 and t0 are dimensionless, then Eq. 1 becomes, with z

constrained to a plane that B of the CP wave lies in, and, with E =AE0, where A is the

amplitude of the CP wave we have used in our simulations:

mlo
t20

d2z0

dt02
= −e

2

l20

z0

|z0|3 +
mτl0
t30

d3z0

dt03
− eAE0 . (6)
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Dividing by mlo
t20
yields:

d2z0

dt02
= −e

2t20
ml30

z0

|z0|3 +
τ

t0

d3z0

dt03
− eAt20

mlo
E0 . (7)

For Fig. 4(d), the natural choice to make for l0 is l0 = r2, and for t0 the natural choice is

the period of the orbit, or t0 = 2π
ω2
= 2π

³
mr32
e2

´1/2
. Equation (7) then becomes:

d2z0

dt02
= − (2π)2 z0

|z0|3 +
τ

t0

d3z0

dt03
− eAt20

mr2
E0 . (8)

The two largest contributing terms (left side and first on right side) now appear independent

of the value of r2. The other two terms do not scale as nicely. Ideally what we would

like is to be able to take an analytic expression for z0 (t) and solve for when Ac occurs to

cause resonance. The next section discusses a perturbation expression that works for several

hundred orbits, but not for the length of time required, as seen best in Fig. 7(a). Still, we

can obtain a rough estimate of the behavior by expecting that at the critical value of Ac for

resonance to take place, that the ratio of the two remaining terms should be approximately

the same, independent of the value of r2, or,³
eAct20
mr2

´
³

τ
t0

´ = k , (9)

where k is a constant. Hence:

Ac = k
τm

e

r2
t30
= k

τm

e

1

(2π)3
r2

µ
e2

mr32

¶3/2
= k

τe2

(2π)3m1/2
(r2)

−7/2 . (10)

In this way, we see how the (r2)
−7/2 dependence arises in a natural way in Fig. 4(e).
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Figure 4(b). Here, different values of r2 and r1 are plotted versus the critical value

of A needed to establish an ω/2 resonance condition. More specifically, at each point

r2 = r1 × 22/3. Each point represents a different numerical simulation at a different initial
circular orbit, r2, with a CP plane wave acting with α = 0, the indicated value of Ac needed

to establish an ω/2 subharmonic resonance condition, and with ω1 = e/ (mr31)
1/2. As r1

and r2 increase, the value of Ac needed to establish resonance decreases as shown.
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Figure 4(c). r vs. t for the first four ω/2 resonance conditions in Fig. 4(b).

Figure 4(d). A blown up plot of r vs. t for the first two ω/2 resonance conditions in

Fig. 4(c).
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Figure 4(e). The values of Ac vs. r2 are plotted here in a log-log plot. From Eq. (10),

we expect that log10 (Ac) = log10

³
k τe2

(2π)3m1/2

´
− 7
2
log10 (r2). As can be seen from the dashed

line, this curve has a fairly close correspondence to the simulated data.

III. PERTURBATION ANALYSIS ON SUBHARMONIC RESONANCE

Having now seen a wide variety of interesting nonlinear subharmonic resonance behaviors

for the simple classical hydrogen atom, we now turn to a more detailed perturbation analysis

to attempt to gain some understanding regarding the origin of these strong resonances.

There are a number of excellent sources for perturbation analysis for nonlinear oscillatory

systems, particularly for 1D oscillators, as in Ref. [15] and the references cited therein. The

2D nature of the present system, due to Eqs. (4) and (5), make the analysis more difficult,

however. The present system somewhat resembles a Duffing oscillator, in that there is a

forcing term and a damping term; one problem is that as the orbit changes a lot, the higher

order corrections to the binding potential become quite key. Several perturbation methods

are available to use, such as the method of multiple scales and the Linstedt-Poincaré method,
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both of which are well documented for 1D oscillators. For 2D oscillators, the identification

of the appropriate expansion parameters certainly becomes more problematic.

Consequently, in the present work we will use the simplest expansion method, which at

least gets to the heart of the issues very quickly, enables the initial trajectory to be easily

modelled, and quickly reveals the origin of the resonance behaviors. In some ways this

is perhaps preferable, since many of the long term behaviors shown in the previous section

would truly require fairly heroic expansion methods to obtain such long term agreement with

the full nonlinear differential equation solutions, and are in general fairly limited in their

range of accuracy, as solving the full nonlinear equations seem in general to be necessary.

From Eqs. (4) and (5), we will introduce the parameters

r = an + r0 , (11)

and

θ = ωnt+ θ0 , (12)

where for the range of simulation we will examine here, we will assume that |r0| ¿ an, and

that
¯̄̄
θ̇0
¯̄̄
¿ ωn, which means that this expansion will only treat the early time evolution,

such as in Fig. 3(c) and 3(d), where |r0/an| and
¯̄̄
θ̇0/ωn

¯̄̄
are still small, as opposed to the

large envelope cases where clearly |r0| can be an appreciable fraction of an, as in Fig. 1(a).
The present perturbation method will certainly shed some insight into the origin of such

resonance conditions, however.

Equations (4) and (5) then become:

r̈0 − (an + r0)
³
ωn + θ̇0

´2
(13)

= − e2

m (an + r0)2
+
2τe2

m

ṙ0

(an + r0)3
− eA

m
sin [(ω1 − ωn) t− θ0 + α] , (14)

and

(an + r0) θ̈0 + 2ṙ0
³
ωn + θ̇0

´
= −τe

2

m

³
ωn + θ̇0

´
(an + r0)2

+
eA

m
cos [(ω1 − ωn) t− θ0 + α] . (15)

The Coulombic term in Eq. (??) can be expanded as:

e2

ma2n

³
1 + r0

an

´2 = e2

ma2n

(
1− 2 r

0

an
+ 3

µ
r0

an

¶2
− 4

µ
r0

an

¶3
+O

"µ
r0

an

¶4#)
. (16)
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As a first approximation, where we linearize all terms to first order in r0, ṙ0, r̈0, θ̇0, and

θ̈0, and assuming products of these terms to be of second order in size, then yields:

r̈0−anω2n−2anωnθ̇0−r0ω2n ≈ −
e2

ma2n
+2

e2

ma2n

r0

an
+
2τe2ṙ0

ma3n
−eA

m
sin [(ω1 − ωn) t− θ0 + α] , (17)

and

anθ̈
0 + 2ṙ0ωn ≈ −τe

2

m

Ã
ωn
a2n
+

θ̇0

a2n
− 2ωn

a3n
r0
!
+

eA

m
cos [(ω1 − ωn) t− θ0 + α] . (18)

It turns out, that because the radiation damping term is so extremely small, that only

retaining the larger term of ωn
a2n
in Eq. (18) and dropping θ̇0

a2n
and −2ωn

a3n
r0, is a fine approxi-

mation, at least for A not too large. Moreover, for up to several hundred orbits, θ0 in the

sine and cosine terms on the right sides of Eqs. (17) and (18) remains quite small and can

also be ignored. Also, in equation (17), we can identify that anω2n =
e2

ma2n
. The linearized

equations then become:

r̈0 − 2anωnθ̇0 − r0ω2n ≈ +2ω2nr0 + 2τω2nṙ0 −
eA

m
sin [(ω1 − ωn) t+ α] , (19)

and

θ̈0 + 2
ṙ0

an
ωn ≈ −τω3n +

eA

man
cos [(ω1 − ωn) t+ α] . (20)

Equation (20) can be integrated once, imposing the initial conditions that we will assume

here that θ0 (t = 0) = 0, θ̇0 (t = 0) = 0, r0 (t = 0) = 0, and ṙ0 (t = 0) = 0. We obtain that

θ̇0 = −2 r
0

an
ωn − τω3nt+

eA

man (ω1 − ωn)
{sin [(ω1 − ωn) t+ α]− sinα} . (21)

Substituting this back into Eq. (19) then results in a linearized 1D oscillator equation in

terms of r0:

r̈0−2τω2nṙ0+ω2nr
0 = −2τanω4nt+

eA

m

½
(3ωn − ω1)

(ω1 − ωn)
sin [(ω1 − ωn) t+ α]− 2ωn

(ω1 − ωn)
sinα

¾
.

(22)

Several cases of interest can immediately be recognized from this equation. If n = 2,

so that ω1 = 2ω2, then a secular situation arises when we neglect damping, since in the

argument of the sine term, (ω1 − ω2) = ω2, thereby providing a harmonic driving term of

the same frequency as the resonant frequency of the oscillator equation. Initially ignoring

the damping term (we’ll correct this shortly), due to the very small value of τ = 2
3

e2

mc3
≈

6.266× 10−24 s for the classical electron, the above equation then becomes, for n = 2,

r̈0nd ≈ −ω22r0nd +
eA

m
[sin (ω2t+ α)− 2 sinα] , (23)
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where the subscript “nd” indicates the no damping condition (τ = 0). Thus, the driving

term acts at the resonant frequency, ω2, of the oscillator equation. The solution to Eq.

(23) is:

r0nd (t) =
eA

m (ω2)
2

½
2 sinα [cos (ω2t)− 1] + 1

2
sin (ω2t) cos (α)− tω2

2
cos (ω2t+ α)

¾
, (24)

thereby revealing the secular term t eA
2mω2

cos (ω2t) that grows without bound for this lin-

earized equation of motion. The above result reveals an interesting feature of the ω/2

subharmonic resonance; the linearized perturbation equations immediately involve a secular

situation.

The same is true for θ̇0, which upon substituting Eq. (24) into (21) yields

θ̇0nd =
eA

ma2ω2
{tω2 cos (ω2t+ α) + 3 sinα− 4 sin (α) cos (ω2t)− sin (ω2t) cos (α) + sin (ω2t+ α)} .

(25)

Integrating yields:

θ0nd =
eA

ma2 (ω2)
2 [tω2 sin (ω2t+ α) + 3tω2 sin (α)− 4 sin (α) sin (ω2t) + cos (ω2t) cosα− cosα] ,

(26)

again revealing the secularly increasing harmonic terms.

For relatively small values of A, these solutions agree fairly well with the full numerical

solution of Eqs. (4) and (5) for the n = 2 case, through the first few hundred orbits, as well

as with the linearized case with damping included, from Eqs. (21) and (22).

Turning now to solve Eqs. (21) and (22) with the damping correction, as well as for the

general nth subharmonic case, yields

r0 (t) = eτω
2
nt [a cos (ωt) + b sin (ωt)]

ω=ωn
√
1−(ωnτ)2 + rp1 (t) + rp2 + rp3 (t) , (27)

where

rp1 (t) ≡ eA

m

(3ωn − ω1)

(ω1 − ωn)
Im

∙
ei[(ω1−ωn)t+α]

− (ω1 − ωn)
2 − 2τω2ni (ω1 − ωn) + ω2n

¸
, (28)

rp2 ≡ − 2eA

mωn (ω1 − ωn)
sinα , (29)

rp3 (t) ≡ −4τ 2anω2n − 2τanω2nt (30)

and where a and b are given by

a = −rp1 (0)− rp2 − rp3 (0) , (31)
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b = − [τω
2
na+ ṙp1 (0) + ṙp3 (0)]

ωn

q
1− (ωnτ )2

, (32)

in order to satisfy r0 (0) = 0 and ṙ0 (0) = 0. These solutions hold fairly well provided t is

restricted to the τω2nt = (ωnτ ) (ωnt)¿ 1 domain, due to ωnτ being so very small for atomic

frequencies of interest, so that eτω
2
nt ≈ 1+τω2nt. In this case, the −2τanω2nt term from rp3 (t)

combines with the secularly increasing τω2nt [a cos (ωt) + b sin (ωt)] term from Eq. (27), so

that the radius decreases on average, in an oscillatory manner. [In particular, see Figs. 5(c)

and 5(d), to clarify the meaning of this last statement.]

Figures 5(a) and 5(b) below show these comparisons for the specific case where r1 = 0.5 Å,

or, r2 = 0.5 × 22/3 Å ≈ 0.7937 Å. In Figure 5(a), with A = 106 Å, n = 2, there are three

curves superimposed, one being the full nonlinear numerical solutions to Eqs. (4) and (5),

the second being Eq. (24), where damping was not included, and the third being the

linearized solution with damping included, Eq. (27). As can be seen in Fig. 5(a), up

through t = 10−14 s, the solutions lie fairly much on top of each other, with only slight

differences that can be seen if one zooms in on the peaks and valleys. However, when

going out further in time, as in Fig. 5(b), then substantial differences occur, as should be

expected. The “beat” like pattern of the envelope (i.e., the envelope oscillating in and

out), occurs from the nonlinear solution, but is not evident in the linear solutions. Also,

when damping is included in the linear solution, one sees the slow decay of the orbit taking

place. If we were to show similar plots for θ0 (t), very analogous results would be seen. Our

linear solutions with and without damping follow the full nonlinear numerical solutions for

the early time development, but eventually are not able to predict the nonlinear changes

that unfold. Similar situations hold for any value of n, where so long as |r0| ¿ an, then

reasonable results are predicted from the linearized equations, as should be expected. Thus,

if we examine larger values of A, the linearized equations are reasonable approximations for

shorter periods of time.
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Figure 5(a). For (a) and (b), r1 = 0.5 Å, r2 = 0.5 × 22/3 Å ≈ 0.7937 Å, A = 106 Å,

n = 2, α = 0. (a) r0 (t) + a2 vs. t, using the full nonlinear solutions to Eqs. (4) and (5), as

well as the linear solution without damping, namely, Eq. (18), and finally the linear solution

with damping included, Eq. (21). The three solutions lie fairly much on top of each other

for the short time period shown.

Figure 5(b). The same conditions are simulated here as in Fig. 5(a), but the time is

taken out farther to 5× 10−13 s . Now a clear difference in the solutions can be seen.
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What is also interesting here is to consider the n = 3 case, since here (3ωn − ω1) = 0,

so rp1 (t) = 0, thereby removing a strong component of the dependence of r0 (t) on the

amplitude A of the CP plane wave. Indeed, when α = 0 and n = 3, then the approximate

analytic prediction of Eq. (27) predicts that a = 4τ 2anω2n, b ≈ 2τanωn, and, with ωnτ ¿ 1,

r0 (t) ≈ eτω
2
nt
£
4τ2a3ω

2
3 cos (ω3t) + 2τa3ω3 sin (ω3t)

¤− 4τ2a3ω23 − 2τa3ω23t ,

so that r0 (t) is virtually independent of A. This is confirmed by Fig. 5(c), which shows the

approximate analytic solution versus the full numerical solution from Eqs. 4 and 5, for the

cases when A = 100 statvolt and A = 500 statvolt. All four curves essentially lie on top

of each other in Fig. 5(c). Of course, if A becomes much larger, then the nonlinear terms

ignored earlier become increasingly more important, thereby causing r0 (t) to again depend

strongly on the value of A, as can be seen in the numerical experiments of Fig. 3.

Figure 5(c). r0 (t) + a3 vs. t, for n = 3, α = 0. The approximate analytic solution

of Eq. (27) and the numerical solution to Eqs. 4 and 5 are superimposed here for A = 100

statvolt and A = 500 statvolt. The solutions lie virtually on top of each other, as they are

nearly independent of A.

Figure 5(d) shows the analogous case for n = 4, α = 0. In contrast with the n = 3

solutions, the n = 4 solutions are again heavily dependent on the value of A. Figure 5(d)
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shows the approximate analytic curve, and the full numerical solution curve, for two cases,

namely, where A = 100 statvolt and A = 500 statvolt. The approximate analytic curve and

the full numerical solution are virtually indistinguishable. Only if we carry these simulations

farther out in time, as was done in Fig. 5(b) for the n = 2 case, will differences be seen.

Figure 5(d). r0 (t)+a4 vs. t, for n = 4, α = 0. The approximate analytic solution and

full numerical solution are virtually indistinguishable, for both the A = 100 statvolt and

A = 500 statvolt conditions, although the 100 vs. 500 curves are clearly distinguishable.

IV. SIMULATION STUDY ON THE APPROACH TO RESONANCE

Let us now discuss the physical origin of the subharmonic resonances that have been

illustrated here. When the period of the orbit of the classical charged particle is a multiple

of the period of the acting CP plane wave, then to first order, in each orbit as much work is

done on the orbiting particle by the CP plane wave as is done to retard the orbiting particle.

If this was precisely the case, however, then a resonance condition would not be established,

and the orbit of the particle would just tend to decay, due to the constantly acting damping

effect of the radiation reaction term. However, the orbit is slightly perturbed by the CP

plane wave, and often in just such a way that slightly more positive work is done per orbit
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by the CP plane wave, then negative work. This results in the resonance conditions seen

so far. Exactly what values of A and α will ensure this result to occur is what makes the

analysis so difficult, although, as we saw, when A is greater than certain critical values,

dependent on the value of n, then resonance is likely to take place.

The kinetic plus potential energy,

E =
mv2

2
− e2

r

versus time plots reveal additional insight into the dependence of resonance on the value

of A. Here we show a few numerical examples. One needs to examine values of time

sufficiently long to be able to recognize this dependence clearly. For example, Figs. 6(a),

6(b), and 6(c) show plots of r (t) vs. t and E vs. t, for n = 2, 3, 4 respectively, with α = 0,

and A chosen to be close to the critical value of A needed to establish resonance. For these

plots, the linearized solutions obtained above agree well with the nonlinear expressions. In

each of the three cases shown, a variation in E vs. t is observed, but the change in E is very

small per orbit, namely, a fractional change in orbit of about 2×10−5 per orbit for the n = 2
case, 5× 10−3 for the n = 3 case shown, and 7× 10−2 for the n = 4 case. These fractions
are larger as n increases, since much larger values of A are required to obtain resonance as

n becomes larger [i.e., see Fig. 4(a)]. Looking at each of these E vs. t plots, one might

suspect that resonance really was not yet established, since in each case, the average of the

E values tends to be decreasing, leading one to suspect orbital decay will occur.
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Figure 6(a). r0 (t)+a2 vs. t for n = 2, α = 0, A = 106 statvolt, as well as E = mv2

2
− e2

r

vs. t are plotted.

Figure 6(b). r0 (t) + a3 vs. t for n = 3, α = 0, A = 11, 977 statvolt, as well as

E = mv2

2
− e2

r
vs. t are plotted.

Figure 6(c). r0 (t) + a4 vs. t for n = 4, α = 0, A = 147, 087 statvolt, as well as

E = mv2

2
− e2

r
vs. t are plotted. The period of each orbit, namely, 2π

ωn
, increases linearly

with n, as can be visually seen in the plots, since ωn = ω1/n, so the period is given by

Tn =
2π
ωn
= 2π

ω1
n.
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However, looking at much longer time periods, very different insights can be gained. As

the orbit decays, the relationship between the phase of the force from the CP plane wave

to the velocity of the orbiting particle changes in subtle ways. Figure 7(a) illustrates this

point, as when A is large enough, namely, greater than or equal to 105.8 statvolt for the

n = 2 case with r1 = 0.5 Å, then the average value of E is able to increase sufficiently to

again become larger than its starting value, which then results in a very long pattern of

oscillating increases and decreases in E vs. t, very much remindful of the patterns found in

the ω/1 resonances in Ref. [1]. Figure 7(b) illustrates how far out in time this behavior

continues; clearly, just a small change in A of as small as 0.1 statvolt can have a dramatic

change in the ensuing orbital trajectory. Figure 7(c) shows the associated r vs. t plot. The

close similarity to Fig. 3(e) for the ω/3 subharmonic resonant case should be noted.

Figure 7(a). E = mv2

2
− e2

r
vs. t for the classical charged particle starting in a circular

orbit at r = r2 = 0.5 Å×22/3, with α = 0, for several different values of A. Just a small

change in A, near Ac ≈ 105.8 statvolt, can have dramatic effects on the delay to orbital

decay.

To find the points of resonances in Figs. 4(a)-(d), plots of E vs. t similar to Fig. 7(a)

were used, as these were the most sensitive to enable the detecting of the point of resonance.

The general condition seemed to be that when E again returned and surpassed its original

value, and when the point at which this occurred in time was as far out in time as possible,
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then the critical transition value of A could be defined. For A below this value, orbital

decay would soon clearly occur, as in the A ≤ 105.7 statvolt cases in Fig. 7(a), and for

A above this value, as in the A ≥ 105.8 statvolt cases in Fig. 7(a), oscillating values of E
vs. t would continue for very long times about the initial value of E. It should be noted,

however, that each of the E vs. t curves in Figs. 7(a) and 7(b) have a fine structure “wiggle”

to them, if zoomed in upon, corresponding to the curves shown in Figs. 6(a)-(c), due to

the oscillations in E during each revolution of the particle’s orbit. Figure 7(c) shows the

corresponding curves of r vs. t to the energy curve of Fig. 7(b). Clearly, the energy vs. t

curves provide a clearer indication of a stability condition.

Figure 7(b). E vs. t as in Fig. 7(a), but carried out farther in time.
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Figure 7(c). r vs. t curves for conditions as in Fig. 7(a), but carried out farther in

time.

Figure 7(d). A zoomed-in view of r vs. t for the conditions in 7(c), to illustrate

how the inner behavior within the envelopes are quite different, although the period of the

oscillations is nearly identical.
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Figure 8 shows the effect of the parameter α on radius; this effect was studied in some

detail in Refs. [3] and [4]. Figure 8 contains plots of r vs. t, for the ω/3 subharmonic

resonance condition, with A = 13, 000 statvolt, for various values of α, where in each case

the classical charged particle was started in an initial circular orbit at r3 = 0.5×32/3 Å. The
effect of α for the same value of A, largely does not appear to change the general condition

of resonance, but displaces the point at which large versus small “beat-like” oscillations in

the r vs. t envelope curve will take place, which in turn will strongly effect the point at

which eventual orbital decay will take place, as in Refs. [3] and [4] for the ω/1 case.

r vs t alpha.gif

Figure 8. r vs. t for the classical charged particle beginning in a circular orbit at

r = 3(2/3) × 0.5 Å, with a CP plane wave of frequency ω1 corresponding to the frequency of

a circular orbit at 0.5 Å . A = 13, 000 statvolt. Each curve represents a different value of

α used in the simulations.

Finally, we note further effects of very large values of A on radius in Fig. 9. Here,

A = 80, 000 statvolt and the ω/2 resonance and stability conditions were examined. Three

initial starting values of r are shown in Fig. 9(b); the same frequency for the applied

circularly polarized plane wave is used for all curves, so the stable radial condition only holds
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for the initial r = 0.5 Å case. Only within a very narrow regime does the stability/resonant

condition actually hold, namely, within a frequency range of about ±0.3% of the resonant

frequency [4],[5], which would correspond here to a starting radius in the range of about

±0.0015 Å around the 0.5 Å starting point. The point of the plots in Fig. 9(b) is to illustrate
how wide the envelope of the r vs. t curves are with such a large value of A. However, even

though there is near overlap of the envelopes, stability is clearly seen only for the r = 0.5 Å

case.

Figure 9(a). r vs. t for the large A case of A = 80, 000 statvolt, for an ω/2 resonance

condition. As can be seen, the outer envelope remains fairly level, indicating the strong

resonance condition even for this large A condition. The initial radius is 0.5 Å . Also shown

is the decay curve when A = 0.
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Figure 9(b). Three initial values of r are shown, all under the ω/2 resonance condition:

r = 0.55 Å, 0.50 Å, and 0.45 Å. In each case the same frequency for the applied circularly

polarized plane wave is used, so the resonant condition only holds for the initial r = 0.5 Å

case. The center line of the three envelope curves in Fig. 9(b) correspond to the case where

radial decay occurs due to A = 0. As can be seen, the envelopes of the r = 0.55 Å and

r = 0.45 Å curves are decaying (they are nearly parallel to the A = 0 decaying curves), while

the r = 0.50 Å curve does not.

V. CONCLUDING REMARKS

In previous work, the effect of applying a CP plane wave to a classical electron in an initial

circular orbit, when the angular frequency of the CP wave matched the angular frequency

of the orbit, was described in some detail [1], [3], [4]. This study was extended to the

case of elliptical orbits [2], where an infinite set of harmonic frequencies associated with the

general periodic motion was needed to be considered. In all cases, very distinctive resonance

conditions were obtained that could be modified by the amplitude of the CP wave and the

phase of the CP wave in relation to the orbital motion of the classical electron. In all cases,

the initial circular and/or elliptic orbit was dramatically altered as a result of the applied

driving force, as might be expected, but with substantial delays in orbital decay occurring,
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which seemed difficult to anticipate to such an extent. Many of these effects have since been

confirmed experimentally [10]. In future work, we hope to make more detailed comparisons.

The present article studied the case where subharmonic resonances took place for near

circular orbits. In the situations studied here, the classical charge particle, following the

nonrelativistic Lorentz-Dirac equation, was started in an initial circular orbit, with a CP

plane wave acting with a frequency n times greater than the frequency of the orbiting

particle. In this way, the CP wave acts nearly periodically, with roughly equal times of

the orbital period, T , for the positive work versus the negative work done on the orbiting

particle by the CP wave. However, the orbit is perturbed slightly, and when the amplitude

of the CP wave A is larger than a critical value, then the orbit is perturbed in just such a

way to make the amount of positive work by the CP wave, per orbit, equal on average to

the energy radiated due to the radiation reaction.

A perturbation analysis was carried out that showed the origin of the resonance effects.

This analysis showed the origin of secular resonance in the n = 2 case, and the near inde-

pendence on A in the n = 3, α = 0 cases. The perturbation analysis agreed well with full

numerical solutions provided that A was not too large and that one did not go out too far in

time, as then strong nonlinear effects enter that in general require the full numerical solution

of the equations of motion. Examples of these resonance effects were shown in some detail.

To the best of our knowledge, such subharmonic resonance effects have not been reported

elsewhere for the Coulombic binding potential. As shown here, the effects can be very

dramatic, even more so than the interesting ω/1 resonance effects discussed elsewhere. Just

a very small change in A can make an enormous difference in the subsequent trajectory of

the charged particle. We believe these effects should translate into similar effects for near

elliptical orbits, although we have not studied the latter sufficiently yet to know if this is

indeed true. Finally, to what degree of importance these resonance effects might play in the

general theory of SED [6], [7], or in the case of experimental results for strong applied fields

to the hydrogen or Rydberg atoms, remains to be seen. We do note that there seems to be

some striking experimental evidence regarding the ratio of a driving microwave frequency

to the classical Kepler frequency of Rydberg atomic systems, and the effects of such ratios

on the ionization, and stabilization, of such atomic systems [8], [9].

Finally, we note that the simple tests we have carried out do not readily reveal the

observance of harmonic resonances of the form nω1 (i.e., superharmonic resonances), or of
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the form nω1
m
, where n and m are integers. Such resonances may still be present, if α and

A are of the right values, but our strong impression is that these resonances, if they exist,

are of a much less pronounced character than the subharmonic resonances reported here.
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Figure Captions

Fig. 1. (a) r vs. t for for six numerical simulation conditions are shown here, namely,

with A = 10, 50, 100, 500, 1000, and 5000 statvolt, all with α = 0 and ω1 = e/ (mr31)
1/2 ≈

4.50×1016 s in Eqs. (4) and (5), with r1 = 0.5 Å. In each case, the classical electron began in
a circular orbit at r = 2 Å. Upon decaying in orbit, strong examples of resonance occurred

for A & 100 statvolt when the decaying radius reached near r2 = r1 × 22/3 ≈ 0.7937 Å. The
envelopes of the curves are remarkably similar, with the most obvious distinction being the

times at which orbital decay again sets in. (b) Here Fig. 1(a) is zoomed in on for the

two curves of A = 10 and A = 50 statvolt to show that even for A = 50 statvolt, there

is a slight sign of resonance near r2 = 0.7937 Å value, although not enough to delay the

time of orbital decay. (c) Here nine simulation conditions are shown, all with the electron

starting in a circular orbit at r = 0.7937 Å. The amplitude A is increased up to 100,000

statvolt, enough to change the envelope of the curve more substantially and to lead to an

ionization-like effect, rather than orbital decay.

Fig. 2. (a) r vs. t when A = 200 statvolt and the classical electron begins a circular

orbit at r2 = r1 × 22/3 ≈ 0.7937 Å. As in Fig. 1, α = 0 and ω1 = e/ (mr31)
1/2 in Eqs. (4)

and (5), with r1 = 0.5 Å. (b) Similar trajectories are shown here when A = 500 and 1000

statvolt. As A increases, the time difference between the peaks and valleys of the envelope

curve become closer together. At the grosser scale of Fig. 1, the envelopes shown here

appear to merge. (c) Here, the three curves in Figs. 2(a) and 2(b) are zoomed in on to

show the finer detail. The time between peaks is roughly the period of a nearly circular

orbit at the radius of 0.7937 Å, namely, 2π
ω2
≈ 2π×2

4.5×1016 ≈ 2.79× 10−16 s.
Fig. 3. (a) r vs. t when A = 14, 000, 15,000, and 16,000 statvolt, and the classical electron

begins a circular orbit at the ω/3 subharmonic resonance point of r3 = r1 × 32/3 ≈ 1.040 Å.
The conditions of α = 0 and ω1 = e/ (mr31)

1/2, with r1 = 0.5 Å in Eqs. (4) and (5) were

used. (b) r vs. t when A = 148, 000, 150,000, and 152,000 statvolt, and the classical electron

begins a circular orbit at the ω/4 subharmonic resonance point of r4 = r1 × 32/3 ≈ 1.260 Å,
when α = 0, ω1 = e/ (mr31)

1/2, and r1 = 0.5 Å in Eqs. (4) and (5) were used. (c) Fig.

3(a) is zoomed in on at the early time period. The distance between peaks is roughly the

period of a circular orbit at r3 = 1.040 Å, namely, 2πω3 ≈ 2π×3
4.5×1016 ≈ 4.89 × 10−16 s . (d) Fig.

3(b) is zoomed in on at the early time period. The distance between peaks is roughly the
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period of a circular orbit at r4 = 1.260 Å, namely, 2π
ω4
≈ 2π×4

4.5×1016 ≈ 5.59 × 10−16 s. The

three curves are nearly indistinguishable in this plot. (e) r vs. t is shown for two very

slightly different conditions, A = 11, 976 and A = 11, 977 statvolt, for the ω/3 subharmonic

resonance condition, where the classical electron starts in a circular orbit at r3 ≈ 1.040 Å,
with α = 0, ω1 = e/ (mr31)

1/2, and r1 = 0.5 Å. With only a very small relative change in A,

a very considerable change in resonant behavior results. (f) r vs. t for the same ω/3 case

as in Figs. 3(a), (c), and (e), but now A is increased large enough for ionization effects to

occur.

Fig. 4. (a) A histogram is shown of the values of Acrit needed to obtain the resonance

points of n = 1, 2, 3, and 4. In each case, α = 0, r1 = 0.5 Å, and the particle was started

in a circular orbit at the respective radii of r1, r2 = r12
2/3, r3 = r13

2/3, and r4 = r14
2/3,

using Eqs. (4) and (5). (b) Here, different values of r2 and r1 are plotted versus the critical

value of A needed to establish an ω/2 resonance condition. More specifically, at each point

r2 = r1 × 22/3. Each point represents a different numerical simulation at a different initial
circular orbit, r2, with a CP plane wave acting with α = 0, the indicated value of Ac needed

to establish an ω/2 subharmonic resonance condition, and with ω1 = e/ (mr31)
1/2. As r1 and

r2 increase, the value of Ac needed to establish resonance decreases as shown. (c) r vs. t for

the first four ω/2 resonance conditions in Fig. 4(b). (d) A blown up plot of r vs. t for the first

two ω/2 resonance conditions in Fig. 4(c). (e) The values of Ac vs. r2 are plotted here in

a log-log plot. From Eq. (10), we expect that log10 (Ac) = log10

³
k τe2

(2π)3m1/2

´
− 7

2
log10 (r2).

As can be seen from the dashed line, this curve has a fairly close correspondence to the

simulated data.

Fig. 5. For (a) and (b), r1 = 0.5 Å, r2 = 0.5 × 22/3 Å ≈ 0.7937 Å, A = 106 Å, n = 2,

α = 0. (a) r0 (t) + a2 vs. t, using the full nonlinear solutions to Eqs. (4) and (5), as well as

the linear solution without damping, namely, Eq. (18), and finally the linear solution with

damping included, Eq. (21). The three solutions lie fairly much on top of each other for

the short time period shown. (b) The same conditions are simulated here as in Fig. 5(a),

but the time is taken out farther to 5× 10−13 s . Now a clear difference in the solutions can
be seen. (c) r0 (t) + a3 vs. t, for n = 3, α = 0. The approximate analytic solution of Eq.

(27) and the numerical solution to Eqs. 4 and 5 are superimposed here for A = 100 statvolt

and A = 500 statvolt. The solutions lie virtually on top of each other, as they are nearly

independent of A. (d) r0 (t) + a4 vs. t, for n = 4, α = 0. The approximate analytic solution
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and full numerical solution are virtually indistinguishable, for both the A = 100 statvolt and

A = 500 statvolt conditions, although the 100 vs. 500 curves are clearly distinguishable.

Fig. 6. (a) r0 (t) + a2 vs. t for n = 2, α = 0, A = 106 statvolt, as well as E = mv2

2
− e2

r

vs. t are plotted. (b) r0 (t) + a3 vs. t for n = 3, α = 0, A = 11, 977 statvolt, as well as

E = mv2

2
− e2

r
vs. t are plotted. (c) r0 (t) + a4 vs. t for n = 4, α = 0, A = 147, 087 statvolt,

as well as E = mv2

2
− e2

r
vs. t are plotted. The period of each orbit, namely, 2π

ωn
, increases

linearly with n, as can be visually seen in the plots, since ωn = ω1/n, so the period is given

by Tn = 2π
ωn
= 2π

ω1
n.

Fig. 7. (a) E = mv2

2
− e2

r
vs. t for the classical charged particle starting in a circular

orbit at r = r2 = 0.5 Å×22/3, with α = 0, for several different values of A. Just a small

change in A, near Ac ≈ 105.8 statvolt, can have dramatic effects on the delay to orbital

decay. (b) E vs. t as in Fig. 7(a), but carried out farther in time. (c) r vs. t curves for

conditions as in Fig. 7(a), but carried out farther in time. (d) A zoomed-in view of r vs.

t for the conditions in 7(c), to illustrate how the inner behavior within the envelopes are

quite different, although the period of the oscillations is nearly identical.

Fig. 8. r vs. t for the classical charged particle beginning in a circular orbit at r =

3(2/3) × 0.5 Å, with a CP plane wave of frequency ω1 corresponding to the frequency of a

circular orbit at 0.5 Å . A = 13, 000 statvolt. Each curve represents a different value of α

used in the simulations.

Fig. 9. r vs. t for the large A case of A = 80, 000 statvolt, for an ω/2 resonance

condition. As can be seen, the outer envelope remains fairly level, indicating the strong

resonance condition even for this large A condition. (a) The initial radius is 0.5 Å . Also

shown is the decay curve when A = 0. (b) Three initial values of r are shown, all under the

ω/2 resonance condition: r = 0.55 Å, 0.50 Å, and 0.45 Å. In each case the same frequency

for the applied circularly polarized plane wave is used, so the resonant condition only holds

for the initial r = 0.5 Å case. The center line of the three envelope curves in Fig. 9(b)

correspond to the case where radial decay occurs due to A = 0. As can be seen, the

envelopes of the r = 0.55 Å and r = 0.45 Å curves are decaying (they are nearly parallel to

the A = 0 decaying curves), while the r = 0.50 Å curve does not.
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