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Abstract

The behavior of a classical charged point particle under the influence of only a
Coulombic binding potential and classical electromagnetic zero-point radiation, is
shown to agree closely with the probability density distribution of Schrödinger’s
wave equation for the ground state of hydrogen. These results again raise the pos-
sibility that the main tenets of stochastic electrodynamics (SED) are correct.
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The following fact probably comes as a surprise to most physicists. A group
of researchers in the past have both proposed and deeply investigated the idea
that classical electrodynamics, namely, Maxwell’s equations and the relativis-
tic version of Newton’s equation of motion, may describe much, if not all, of
atomic physical processes, provided one takes into account the appropriate
classical electromagnetic random radiation fields acting on classical charged
particles. Stochastic electrodynamics (SED) is the usual name given for this
physical theory; it was most significantly advanced in the 1960s by Boyer [1],[2]
and Marshall [3], [4], [5], although its full history is somewhat more compli-
cated and is reviewed and described in Ref. [6]. Other useful reviews exist
such as Refs. [7], [8], and [9].

SED is really a subset of classical electrodynamics. However, it differs from
conventional treatments in classical electrodynamics in that it assumes that
if thermodynamic equilibrium of classical charged particles is at all possible,
then a thermodynamic radiation spectrum must also exist and must be an
essential part of the thermodynamic system of charged particles and radia-
tion. As can be shown via statistical and thermodynamic analyses [1], [10],
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if thermodynamic equilibrium is possible for such a system, then there must
exist random radiation that is present even at temperature T = 0. This ra-
diation has been termed classical electromagnetic zero-point (ZP) radiation,
where the “ZP” terminology stands for T = 0, as opposed to “ground state”
or “lowest energy state”. Either of the following requirements has been shown
to enable the derivation of the required functional form of the ZP radiation
spectrum: (1) the ZP radiation must possess a Lorentz invariant character
[1], and (2) no heat must flow during reversible thermodynamic operations
[10],[11],[12]. Deriving the ZP spectral form from (1) follows only from the
radiation properties, while (2) involves the interaction of both particles and
fields.

Results have been obtained from SED that agree nicely with quantum me-
chanical (QM) predictions for linear systems [7], such as for systems of elec-
tric dipole simple harmonic oscillators [13],[9], and for linear electromagnetic
fields in Casimir/van der Waals type situations [6],[12],[14]. Moreover, most
physicists, who know of SED, are likely to agree that SED provides a better
description of physical processes than does conventional classical electrody-
namics without the consideration of ZP and Planckian electromagnetic radia-
tion. Nevertheless, since the late 1970s and early 1980s, the vast majority of
physicists have clearly concluded that SED cannot come close to predicting
the full range of QM phenomena for nonlinear dynamics found in real atomic
systems [15], [16], [17],[18], [19], [20], [9], [6]. In particular, these past analyses
of SED predicted clear disagreements with physical observation, such as that
a single hydrogen atom will ionize at T = 0 and that the spectra predicted by
SED does not agree with QM predictions.

However, as discussed in Refs. [21] and [22], reasons exist to raise some doubts
on these conclusions. In particular, for atomic systems, all of the key phys-
ical effects should arise from electromagnetic interactions. Examining other
nonlinear binding potentials, other than ones arising from Coulombic binding
potentials, have no relation to real physical atomic systems. Even though
one can place any potential function in Schrödinger’s equation, and attempt
to solve it, SED does not need to match these solutions as they have little
relationship, in detail, to the real physical world of atomic systems. Instead,
realistic binding potentials must be examined. Moreover, for perturbation
analyses, if one assumes that the small effect of the electric charge is a key
part of the perturbation analysis, then this effect must be consistently carried
out for the radiation reaction as well as for the binding potential and the effect
of the ZP field acting on the orbiting charge [22]. Still, properly accounting for
these objections into an improved analytic, or even semi-analytic, reanalysis
of SED, has seemed quite difficult.

For that reason, in this article we have turned to attacking one of the more
significant problems in SED via simulation methods, namely, the hydrogen
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atom. The present results certainly seem to bear out the hope that the earlier
impasse in SED may have been due to the difficulties of analyzing nonlinear
stochastic differential equations, rather than a fundamental physical flaw in
the basic ideas of SED.

In quick summary, the present simulation work was carried out by tracking
individual trajectories of electrons for long lengths of time, assuming classical
electrodynamics governed the trajectories. Probability distributions were then
obtained in coordinate space based on the length of time the electrons spent in
regions of space about the nucleus. References [23],[24], [25], and [26] contain
many of the technical details that led to the present work, although these
previous works concentrated on the nonlinear dynamical effects of a classical
electron, with charge −e and rest mass m, in orbit about an infinitely massive
nucleus of charge+e, where besides the binding potential acting, only a limited
set of plane waves acted on the electron. In that work, as here, we have
numerically solved the nonrelativistic approximation to the classical Lorentz-
Dirac equation [27],[28]:

mz̈ = − e
2z
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, and where E and B represent the electric and mag-

netic fields of the radiation acting on the electron. We note that to date
we have carried out a fair bit of numerical analysis involving full relativistic
computation, but, for the results reported here, the key effects of our present
system are adequately represented by the above equations.

The electromagnetic ZP field formally consists of an infinite set of frequencies,
which clearly would be impossible to implement fully in any sort of numerical
scheme. Consequently, we limited the number of frequencies in the simulation
to ranges that had the most significant effect on the electron’s orbital motion.
We did so in two ways. Often the ZP radiation fields are represented in SED
by a sum of plane waves [6]:

EZP (x, t) =
1

(LxLyLz)
1/2

∞X
nx,ny,nz=−∞

X
λ=1,2
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with nx, ny, and nz integers, kn = 2π
³
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´
,ωn = c |kn|, kn·ε̂kn,λ =

0, ε̂kn,λ · ε̂kn,λ
0 = 0 for λ 6= λ0, and Akn,λ and Bkn,λ are both real quantities.

BZP (x, t) is expressed by replacing ε̂kn,λ by
³
k̂n×ε̂kn,λ

´
in the above expres-

sion for EZP (x, t). In the above, Lx, Ly, and Lz are dimensions of a rectilinear
region in space. Usually at the end of SED calculations, these dimensions are
taken to a limit of infinity. For our simulation, we wanted them to be large,

3



but not so large that they created too many plane waves to prohibit numeri-
cal simulation. The coefficients Akn,λ and Bkn,λ were taken to be independent
random variables generated once at the start of each simulation, via a random
number generator routine, and then held fixed in value for the remainder of
the simulation. The random number generator algorithm was designed to pro-
duce a Gaussian distribution for these coefficients, with an expectation value
of zero, and a second moment of,

D
A2

kn,λ

E
=
D
B2

kn,λ

E
= 2π~ωn. The latter

specification corresponds to the energy spectrum of classical electromagnetic
ZP radiation of ρZP (ω) = ~ω3/ (2πc3) [6].

For reasons to be explained shortly, the orbit of the electron was forced to
lie in the x − y plane. We retained plane waves in our simulation from the
summation expression above for the ZP fields, up to an angular frequency
that corresponded to that of an electron in a circular orbit of radius 0.1 Å, or,
ωmax ≈ 5.03 × 1017 s−1. For our simulations, we chose Lx = Ly = 37.4 Å and
Lz = 40, 850, 000 Å ≈ 0.41 cm, bearing in mind that this scenario has some
similarity to an atom situated in a rectilinear cavity with highly conducting
walls of these dimensions; thus, this “cavity”, or region of space, was made
very narrow (≈ 37 Å), but still fairly large in width compared to the Bohr
radius (≈ 0.53 Å), and comparatively very long (≈ 0.41 cm). This procedure
was done to keep the number of plane waves needed as small as possible, while
still attempting to retain the most important physical effects. By making Lx
and Ly so very much smaller than Lz, then if nx or ny was anything other
than zero, the frequency of the associated plane wave would be greater than
c2π/Lx ≈ 5.04 × 1017 s−1, thereby enabling us to drop such waves in this
approximation scheme. Consequently, only waves traveling in the +ẑ and −ẑ
were retained; the value of Lz we chose then resulted in ≈ 2.2 × 106 plane
being used in the simulation. The minimum, nonzero, angular frequency in
the simulation was ωmin = c2π/Lz ≈ 4.61×1011 s−1, which corresponds to the
angular frequency of an electron in a circular orbit of radius ≈ 1.06×10−5 cm,
or, about 2000 times the size of the Bohr radius, aB ≈ 0.53 Å. In this way, we
expected to simulate the approximate behavior of the classical electron in the
SED scheme, for radii lying between about 0.1 Å to hundreds of Angstroms.
We note, however, that our tests show that changes to the specific numbers
we have chosen for Lx, Ly, and Lz do not change the general results we report
here (i.e., these are not “fitting parameters”); rather, the key point is the
scheme of including roughly the described range of frequencies to obtain the
probability density distribution for radii above about 0.1 Å for essentially 2D
circular motion, with the 2D motion consideration being implemented only in
order to significantly reduce computational time.

This approximate method for representing the desired physical situation greatly
reduced the number of plane waves required if Lx, Ly, and Lz were all made
equal to ≈ 0.41 cm. Although physically this last approach would be more
desirable, it would have resulted in an absurd number of plane waves to handle
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numerically, namely, (2.2× 106)
3 ≈ 1019 waves. Nevertheless, even our much

reduced number of 2.2×106 waves created expensive runs in CPU time. Con-
sequently, we experimented with and found a second approximation method
that reduced our CPU times yet further, while still retaining key physical ef-
fects. We will refer to this second method as our “window” approximation.
We note that the results of our window approximation described below have
produced results that agree reasonably well with other simulation tests we
have made that do not invoke this window approximation, but that require
CPU times of about 250 times what we report below.

Specifically, as discussed in Refs. [23] and [26], we found that each plane wave
effected near-circular orbits most significantly for orbital angular frequencies
lying within a fairly narrow range of the angular frequency of the plane wave
itself. Figure 9 in Ref. [26] best illustrates this point. Our numerical ex-
periments found that for the average range of plane wave amplitudes in the
present simulation scheme, that a window of ±3% about each average radius
more than adequately accounted for the most significant effects. We were pre-
pared to examine a much more complicated window algorithm due to elliptical
orbit considerations, based on the work of Ref. [24], but numerical experiments
showed that the eccentricity of the orbits typically remained small throughout
the simulation runs, thereby reducing the need for such considerations. Since
the angular frequency of the classical electron in a circular orbit is e/ (mr3)

1/2,
the specific algorithm we implemented kept track of the radius r and retained
in the simulation the plane waves with angular frequencies that fell within a
range of e/ (mr3

H)
1/2 to e/ (mr3

L)
1/2, where rL = r (1− f) and rH = r (1 + f),

where f was selected in these simulations to be 0.03, based on resonance width
analysis. As r changed, this scheme automatically changed the range of plane
wave frequencies included in the summation to act on the electron, but always
considered only those specific plane waves already initialized via the random
number generation carried out at the beginning of the simulation. Future
speedups in the simulation might well profit by lowering the value of f yet
further, and/or by treating it as a function of r to better fit resonance width
as r varies.

A typical simulation produced roughly circular orbits that would grow and
shrink in radius over time, as seen in Fig. 1. We carried out 11 simulations,
each with the starting condition of r = 0.53 Å, but with different seeds in the
random number generation scheme to create a different set of plane waves.
Consequently, the trajectory of each of these simulations was completely dif-
ferent, although the general character of each was similar. We used a Runge-
Kutta 5th order algorithm, with an adaptive stepsize. The simulation code
was written in C; the runs were carried out on 11 separate Pentium 4 PCs,
each with 1.8 GHz processing speed and 512 MB of RAM. The CPU times
for each run was about 5 CPU days, with some more and some less, as we
attempted to have all electrons tracked for reasonably close to the same length
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in time. However, for those electrons spending more time near the nucleus,
the calculations took longer because of the faster fluctuations involved. The
net time for all runs was about 55 CPU days.

Each of the four snapshots in Fig. 2 show the radial probability density curve,
PQM (r) vs. r, from Schrödinger’s wave equation for the ground state of hydro-
gen, versus the probability distribution calculated at the indicated snapshot
in time. In Fig. 2(a), the simulated trajectories still strongly show the charac-
ter of the initial condition of r = 0.53 Å. However, each succeeding snapshot
shows a striking convergence toward PQM (r). Moreover, the probability dis-
tribution for the end of each of the individual eleven runs has a reasonable
resemblance to PQM (r), although combining all of the results together pro-
vides a better match, presumably due to the net longer simulation run and
the greater sampling over field conditions. We anticipate that future tests of
interest will involve other initial starting points, deeper testing for ergodicity,
etc.

These simulation results follow the qualitative idea that Boyer originally sug-
gested in 1975 [8],[29] that for larger radial orbits, the dominant part of the
ZP spectrum that will effect the orbit will be the low frequency regime, which
has a low energetic contribution, thereby leading on average to a decaying
behavior of the orbit. However, for orbits of smaller radius, then the electron
will interact most strongly with the higher frequency components of the ZP
field, which have a larger energetic contribution. Hence, for smaller radii, the
probability greatly increases that the ZP field will act to increase the orbit
size. In this way, a stochastic-like pattern should emerge for the electron [Fig.
1].

We believe that the nonlinear behavior of the simple classical hydrogen atom
has yet many unexplored properties; some aspects we have found and recently
reported on [23],[24], [25],[26], yet it seems clear to us that there is much
more to yet uncover. We expect that the present simulation methods, and
further advances along these lines, will continue to prove helpful in exploring
this apparently simple, yet surprisingly complex nonlinear system, as well as
provide means for investigating other aspects of SED.

Without question, the simulations presented here do not “prove” that SED
works for atomic systems, nor that SED even fully works for the ground state of
hydrogen. Far more simulation results, along with detailed analytical analysis
is essential. Along these lines we have carried out much lengthier simulations
than even those described here, such that the present “window approximation”
is not imposed; we expect to report on this work in the future. Moreover, there
are far more additional tests and phenomena to still be examined, including
ionization and stability issues, high frequency effects, relativistic corrections,
atomic spectra, many electron situations, spin, and an understanding of how
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“photon” behavior arises. We are presently investigating some of these areas.
Nevertheless, while fully acknowledging and recognizing the need for these
deeper investigations, it also seems clear there is a very real and tantalizing
possibility, far stronger now that we see predictions for the hydrogen atom in
fairly close agreement with physical observation, that the core ideas of SED
may well provide a deep fundamental perspective on nature and a potential
basis for QM phenomena.
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Figure Captions

Figure 1: Typical plot of r vs. t for one trajectory realization via the methods
described here. The inset shows the probability density P (r) vs r computed
for this particular trajectory.

Figure 2: Plots of the radial probability density vs. radius. The solid line
was calculated from the ground state of hydrogen via Schrödinger’s equation:
P (r) = 4πr2 |Ψ (x)|2 = 4r2

a3
B
exp

³
− 2r
aB

´
, where aB = ~2/me2. The dotted

curves are the simulation results, calculated as a time average for all eleven
simulation runs from time t = 0 to the average time indicated: (a) 1.417×10−12

sec; (b) 4.500× 10−12 sec; (c) 5.705× 10−12 sec; (d) 7.252× 10−12 sec.
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