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Abstract

Here we show that a wide range of states of phases and amplitudes exist for a circularly polarized

(CP) plane wave to act on a classical hydrogen model to achieve infinite times of stability (i.e.,

no orbital decay due to radiation reaction effects). An analytic solution is first deduced to show

this effect for circular orbits in the nonrelativistic approximation. We then use this analytic result

to help provide insight into detailed simulation investigations of deviations from these idealistic

conditions. By changing the phase of the CP wave, the time td when orbital decay sets in can be

made to vary enormously. The patterns of this behavior are examined here and analyzed in physical

terms for the underlying but rather unintuitive reasons for these nonlinear effects. We speculate

that most of these effects can be generalized to analogous elliptical orbital conditions with a specific

infinite set of CP waves present. The article ends by briefly considering multiple CP plane waves

acting on the classical hydrogen atom in an initial circular orbital state, resulting in “jump- and

diffusion-like” orbital motions for this highly nonlinear system. These simple examples reveal the

possibility of very rich and complex patterns that occur when a wide spectrum of radiation acts

on this classical hydrogen system.
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I. INTRODUCTION

The hydrogen atom has received renewed attention in the past decade or so, due to

studies involved with Rydberg analysis, chaos, and scarring [1], [2], [3], [4]. Classical and

semiclassical analysis have been found in the past to offer helpful insight and predictability on

the behavior of Rydberg-like atoms. However, in these previous interesting works involving

classical and semiclassical analyses of ionization behavior and chaotic and scarred orbits of

Rydberg systems (see, for example, Refs. [5], [2], [6], [3], [7], [8], and cited references therein),

the radiation reaction term in the Lorentz-Dirac equation [9] describing the behavior of

classical charged point particles is rarely, if at all, considered. Although physicists certainly

agree that this term is necessary in a consistent classical electrodynamic treatment of classical

charged particles [9], [10], [11], [12], still, this is the term that persuaded physicists in the

early 1900s that a completely classical treatment of the atom was not a viable explanation

for atomic behavior, as it would necessarily result in a collapse of the electron’s orbit in a

time of about 1.3 × 10−11 sec. This observation, and other apparently nonclassical effects

(blackbody radiation, photoelectric effect, etc.), spurred the development of Bohr’s atomic

model, followed by the more complete work by Heisenberg, Schrödinger, Dirac, and others

of quantum mechanics.

Nevertheless, our recent work [13], [14], [15] has revealed a number of interesting situations

as a result of the very nonlinear behavior of the Coulombic binding potential, as well as the

small but steady action of the radiation reaction damping force, and the presence of applied

electromagnetic radiation acting on the classical atom. Our intention is to continue this

development, building upon previous work to include the effects of multiple plane waves.

We expect at the very least to continue to uncover interesting and surprising results of

the nonlinear behavior of this classical system. However, we also expect that the results

may prove helpful in revealing better why the classical analysis can in some cases provide

excellent insight into the behavior of Rydberg atomic systems. For example, the literature

is full of such observations, such as in the extensive report of Ref. [2], p. 291: “Where

the quantitative agreement between experimental data and classical calculations is good for

threshold field amplitudes for the onset of ‘ionization’, the classical theory gives keen insight

into the semiclassical dynamics. Conversely, where the quantitative agreement breaks down

is a signature for the importance of quantal effects. Often this occurs where the nonclassical
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behavior is, nevertheless, still anchored in subtle ways to the classical dynamics in and

near nonlinear resonances.” Pushing on such understanding should prove to be helpful in

modeling, as simply as possible, the surprisingly complex behavior that has been reported

for Rydberg-like systems. We are hopeful to be able to use such models in technology

application situations.

Finally, at the most, we are hopeful to uncover more of when, why, and possibly why

not, the theory of stochastic electrodynamics (SED) holds for the simple classical hydrogen

atom. As reported in much more detail elsewhere [15], [16], [17], [18], SED is an entirely

classical theory of nature that considers the interaction of classical charged particles with

electromagnetic fields, using Maxwell’s classical electromagnetic equations, but while also

considering that an equilibrium situation for particles and fields at temperature T = 0 nec-

essarily requires the presence of classical electromagnetic zero-point (ZP) radiation. This

idea has revealed a number of surprisingly quantum mechanical-like properties to be pre-

dicted from this entirely classical theory. However, when attacking realistic atomic systems

in nature, rather than simple approximate systems like the simple harmonic oscillator, then

severe difficulties have been reported in the past [17],[18]. We have been suspicious that

some of these difficulties may simply be due to the inherent difficulty of analyzing the subtle

nonlinear effects of a Coulombic binding potential [19],[20]; the present study, along with

other work to be presented in the near future, is intended to help address some of these

points.

Indeed, our work in Ref. [21] shows that a detailed simulation of the effects of classical

electromagnetic radiation acting on a classical electron in a classical hydrogen potential, re-

sults in a stochastic-like motion that yields a probability distribution over time that appears

extremely close to the ground state probability distribution for hydrogen. Clearly there

are tantalizing physical aspects yet to be understood here of the ramifications of this work.

These particular simulations are extremely computationally intensive. However, for large

orbits, as would typically occur in a Rydberg atom, the computations would become enor-

mously smaller, thereby providing an efficient computational tool for addressing Rydberg

atom behavior. Thus, in summary, we believe this research direction should provide an

excellent technology related simulation tool for studying much of Rydberg atom dynamics,

while also providing the means for understanding much deeper ramifications of SED and its

possible basis for much of quantum mechanics.
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Except for a preliminary result to be considered in the concluding section of this article

involving many plane waves, the present article considers a single classical circularly polar-

ized (CP) plane wave interacting with the classical hydrogen atom. This atomic system

will be treated here as consisting of a particle with charge −e and rest mass m, orbiting an
infinitely massive and oppositely charged nucleus. In Ref. [15] we carried out a perturbation

analysis, showing in more detail why some of the nonlinear behaviors occur as first discussed

in Ref. [13]. In particular, for the classical electron moving in a near circular orbit, with an

applied CP plane wave normally directed at the plane of the orbit, then quasi-stability of

the orbit can be achieved provided the amplitude of the electric field of plane wave exceeds

a particular critical value. The result is a constant spiralling in and out motion of the elec-

tron, with the spirals growing larger and larger in amplitude, until finally a critical point is

reached and then decay of the orbit occurs. As shown in Ref. [14], this same behavior also

occurs for more general, but more complicated, elliptical orbits, where now an infinite set of

plane waves are required to achieve the same effect, where the plane waves are harmonics of

the period of the orbit.

In Sec. II of the present article, we begin by providing more general conditions than

considered in Ref. [13] for achieving perfect stability for the interaction of a single CP wave

with the classical hydrogen atom. This example will provide a clearer physical insight

into why the effect of the phase of the CP plane wave, in relation to the motion of the

orbiting electron, is so extremely important in changing the time to decay, td, of the classical

electron’s orbit. Section III then turns to a detailed simulation analysis of a wide range of

conditions influencing td. Many of these results seem physically very unintuitive. Section

IV then turns to explain and analyze some of these subtleties, by making use of some of the

perturbation work in Ref. [15].

Finally, Sec. V ends with a few concluding remarks on where we anticipate this work is

headed. Future articles are intended to report on work already finished or in various stages

of completion, including a full relativistic examination, and the situation that is of great

interest to us, namely, when a radiation spectrum is present that may possibly result in a

thermodynamic equilibrium state with the classical atom. In anticipation of this work, in

Sec. V we briefly examine the interesting question of what happens when multiplane waves

act on the orbiting electron. As should be evident from Refs. [13], [14], and [15], this simple

classical hydrogen problem presents a rich range of interesting nonlinear phenomena with
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just the simple consideration of a single electromagnetic plane wave acting. However, with

multiple plane waves, the range of possibilities grows considerably wider, as illustrated in

Sec. V. As shown there, “jump-like” behaviors are fairly easy to create.

II. ANALYSIS OF INFINITE STABILITY CASE

As discussed in Ref. [13], when a classical electron of massm, charge−e, follows a circular
orbit of radius a about an infinitely massive and oppositely charged point nucleus, and when

a CP plane wave is directed along the normal to the plane of the orbit, then by choosing

the frequency of the plane wave to be equal to the orbital frequency, or ωc ≡
³

e2

ma3

´1/2

,

and by choosing the phase of the velocity of the electron and the electric field to be aligned

with each other (i.e., make (−e)E to be in the same direction as the velocity ż), then the

amplitude A of the electric field of the plane wave can be chosen to perfectly balance the

radiation reaction. The condition found was

Ac ≡ 2e3ωc
3mc3a2

= (ωcτ)
e

a2
. (1)

where τ ≡ 2e2

3mc3 .

However, we can generalize this very specific scenario and achieve similar conditions of

perfect stability for the case when A > Ac. Figure 1 illustrates the basic idea. By having

the component of the force (−e)E from the plane wave in the x − y plane, of eA cos (α),
be equal and opposite to the radiation reaction, then the angular frequency of the orbiting

particle can stay constant. Moreover, by allowing a slightly different angular frequency in

the orbiting motion from what would occur if the particle was only under the influence of

the Coulombic binding potential, so that now we allow ω 6= ωc, then an orbit of constant
radius a can be maintained.

Being more specific, we can write the nonrelativistic (NR) equations of motion in polar

coordinates as:

m
³
r̈−rθ̇2

´
= −e

2

r2
+2τe2 ṙ

r3
+ eA sin (θ − ωt− α) , (2)

and

m
³
rθ̈+2ṙθ̇

´
= −τe

2

r2
θ̇+eA cos (θ − ωt− α) , (3)

where the radiation reaction has been attributed largely to the force from the Coulombic

binding potential, and approximated as in Ref. [15], but now written in polar coordinates
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above as:

Freac ≈ 2e2

3c3
d

dt

½ −e2z

|z|3m

¾
= r̂

2τe2ṙ

r3
− θ̂ τe

2θ̇

r2
. (4)

In order for a perfect circular orbit to be maintained, then we would need to impose that

r = a, ṙ = 0, r̈ = 0, θ = ωt, θ̇ = ω, θ̈ = 0, then our NR approximation to Freac reduces to

Freac = −θ̂ τe
2ω

a2
= −θ̂ (ωτ) e

2

a2
= −θ̂

µ
ω

ωc

¶
eAc . (5)

Thus, the radiation reaction only occurs in the tangential direction for circular motion. It

is clearly a very small force, since τ ≈ 6.3 × 10−24 sec, ω ≈ 4.5 × 1016 sec−1 for a = 0.5 Å,

so (ωτ) ≈ 2.8 × 10−7, while e/a2 ≈ 1.9 × 107 statvolt is the magnitude of the Coulombic

electrostatic field from the classical nucleus acting on the orbiting electron.

Equations (2) and (3) reduce to:

mω2a =
e2

a2
+ eA sin (α) , (6)

0 = −
µ
ω

ωc

¶
eAc + eA cos (α) . (7)

Hence we have two equations and two unknowns, namely, α and ω. Solving for ω yields the

quadratic equation:

ω4 − 2ω2ω2
c

"
1− (τωc)

2

2

#
+ ω4

c

µ
1− A

2

A2
c

(ωcτ)
2

¶
= 0 , (8)

which can readily be solved to obtain:

ω2 = ω2
c

1− (τωc)22
± (τωc)

"
A2

A2
c

− 1 + (τωc)
2

4

#1/2
 . (9)

This solution is exact for our nonrelativistic case. To lowest order in (τωc), and where

A/Ac is not just a very small fraction slightly larger than unity, then we can expand the

above in terms of the small (ωcτ) parameter to obtain

ω2 ≈ ω2
c

(
1± (τωc)

µ
A2

A2
c

− 1
¶1/2

)
, (10)

where terms of order O
£
(ωτc)

2¤ have been dropped.
Turning to Eq. (7), we obtain

α = cos−1

µ
Ac
A

ω

ωc

¶
. (11)
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This result yields the exact value of α. We of course assume A ≥ Ac.
As for the ± signs in Eqs. (9) and (10), one can show upon substituting back into Eqs.

(7) and (6) that one needs to use the plus sign when 0 ≤ α < π/2, and to use the minus

sign when −π/2 < α < 0. It should be noted that when π/2 ≤ α ≤ π, or −π/2 ≤ α ≤ −π,
then the radiation reaction cannot be balanced by (−e)E [see Eq. (7) or refer to Fig. 1]

and infinite td is then not possible.

Thus, for each value of A, when A > Ac, there are two frequencies that we will call ω+

and ω−, corresponding to the ± signs in Eq. (9), and the two corresponding angles from

Eq. (11) that we will call α+ and α−, such that a perfect circular orbit can be maintained

indefinitely for this idealistic situation. In Fig. 1, all vectors (−e)E that can yield infinite

stability lie in the top half semicircle (−π
2
< α < +π

2
). From Eq. (11), α+ = −α−. In Fig.

1, α+ would be directed as shown, so α+ > 0, with (−e)E tilted to the left of the velocity v.

The corresponding angular frequency of ω+ would satisfy ω+ > ωc, where ωc is the angular

frequency when α = 0 and A = Ac. Likewise, α− would be directed in Fig. 1 such that

α− < 0, or, (−e)E is tilted to the right of the velocity v, with the corresponding angular

frequency of ω− being such that ω− < ωc.

The differences between ω−, ωc, and ω+ are in general quite small, since the dimensionless

quantity of (ωcτ) is such a small number for most atomic radii of interest in Eqs. (9) and

(10). For a = 0.5 Å, (ωcτ) = 2.8× 10−7, so for this radius, ω+, ω−, and ωc differ in the 7th

decimal place for A = 10 statvolt, the 5th decimal for A = 100 statvolt, the 4th decimal for

A =1000 statvolt, and the 3rd decimal for A = 80, 000 statvolt. Likewise, whether one used

ω+, ωc, or ω− in Eq. (11), will have a correspondingly small effect on α− and α−, with the

most significant factor again being that α+ = −α−.
As can be shown, when A = Ac, then the + sign in Eq. (9) holds, and we obtain

ω = ωc and α = 0, as expected. Moreover, since for reasonable values of A > Ac such

that (τωc) (A/Ac) ¿ 1, then ω+ ≈ ω− ≈ ωc, so our exact NR result of Eq. (11) reduces to
α± ≈ cos−1 (Ac/A), with α+ = −α−.
What is interesting about these two solutions for a perfect circular orbit, is that the ω+

solutions, with π/2 < α+ ≤ 0, form what we will call “stable solutions”, meaning, that if

one makes α or ω slightly less or greater than the prescribed values of α+ and ω+, then one

can still obtain a very long time before decay occurs; hence, td, although no longer infinite,

will still be large. In contrast, the ω− solutions, with 0 < α− < −π/2, form what we will
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call “unstable solutions”, meaning, that if one makes α or ω slightly less or greater than the

prescribed values of α− and ω−, then near immediate decay in the orbit begins. This result

occurs even though the precise value of α− and ω− provide an orbit with an infinite value of

td. The contrast seems fascinating, and will be discussed more in the next section involving

detailed simulation results.

III. SIMULATION STUDY OF td

In Ref. [15], simulation results were shown illustrating the very large range of td that can

exist, simply by changing α, while holding A fixed. Figure 2 illustrates the typical type of

results found, this time for A = 300 statvolt and α = −π/4. We will define td precisely to
be the point indicated in Fig. 2(b), which seems to be a key characteristic of the onset of

orbital decay, namely, where the radial oscillation only rises to about the halfway point of

previous oscillations, then starts to undergo a steady, oscillatory decline.

Using this definition of td, Fig. 3 shows our simulation results after carrying out cal-

culations as in Fig. 2, for a range of values of α, and for a range of values of A. These

calculations were carried out for one frequency value of the applied CP plane wave, namely,

ωc. More specifically, all trajectories were started in a circular orbit with a = 0.5 Å, with

an applied CP plane wave with the indicated value of A and α as in Fig. 3, and with an

angular frequency ω = (e2/ma3)
1/2. This is the proper frequency for a constant circular

orbit (in the NR approximation) if either (1) no radiation reaction existed and no CP plane

wave existed, or, (2) if radiation reaction existed, but A = Ac and α = 0.

Four values of α+, from Eq. (11), corresponding to the values of A = 5.419, 6.0, 10, and

1000 statvolt, are labelled in this diagram. As can be seen, they fall at the center of the

peaks of the td vs. α curves. If the plane waves had the precise values of ω = ω+ from

Eq. (9), then td would indeed be infinite (we have also confirmed this point via specific

simulation testing). However, the simulations in Fig. 3 were carried out with the very

slightly different value of ω = ωc in the CP plane wave, so, the peaks of td vs. α for these

curves do not appear to be infinite, but, they are indeed very large and sharply peaked, and

rather difficult to find exactly by pure simulation methods.

Moreover, in correspondence with the earlier comments made about the “unstable” peak

at ω− and α−, no sign of the predicted infinite td peak shows up in Fig. 3, since ω in the
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plane wave expressions was not taken to be ω−, but rather the slightly different value of

ωc. We should mention that our simulation testing of the “unstable peak” at ω− and α−

does reveal its existence for each value of A, but, one needs to increase the precision of the

numerical calculations to track the particle orbit out to larger time values; the higher the

precision imposed, the farther out in time the simulation predicts before decay begins. It

certainly appears that the td vs. α curves do peak at ω−,α−, for each value of A, but, the

shape of this peak appears like that of a near delta-function. Clearly, the behavior of td

near the ω−, α− peaks is considerably different than the regions near the ω+,α+ peaks.

Figure 4 helps to clarify the points made about the ω−,α− solutions. This figure contains

our results for r vs. t based on numerically solving Eqs. (2) and (3) for a = 0.5 Å and

A = 1000 statvolt. As proven in Sec. II, the ω−,α− result should be exactly r = 0.5 Å for

all t. However, as can be seen, the numerical predictions do not yield this result very easily.

Here we followed the adaptive time-step Burlisch-Stoer algorithm, as described in Ref. [22],

which we have found to be an extremely good algorithm to use when one plane wave is

present. [All of our single plane wave numerical results reported here, and in Refs. [13],

[14], and [15], used this algorithm.] The labels on the curves of “exp(-15)”, etc., indicate

the relative precision we imposed on each step of the algorithm. As can be seen, even when

huge increases in numerical precision were imposed, from exp(-15) to exp(-30), still, the

simulation only yielded r ≈ 0.5 Å up to about 4× 10−14 sec, which is about 280 orbits; after

that, the radius changed rapidly to about 0.492 Å, and then a steady oscillatory radial decay

began. In contrast, for the corresponding α+,ω+ solution, even after 5×10−13 sec we found

that the radius only fluctuated in value in the 7th decimal place when only a numerical

precision of exp(-20) was imposed. Clearly, any “noise” present, such as from numerical

imprecision, then the α−, ω− result will not be obtained, whereas the α+,ω+ solution is far

more easily approximated.

Some other interesting characteristics can be noted from Fig. 3. First, there are four

peaks shown, corresponding to A = 5.419, 6.0, 10, and 1000 statvolt. For any fixed value

of td, the widths of these peaks become increasingly broader, the larger the value of A. For

example, for td = 5.0× 10−11 sec, the width of the A = Ac peak [i.e., the one indicated at

5.419 statvolt, from Eq. (1)] is zero, so this peak has the character of a delta function. In

turn, the angular widths of theA = 5.419, 6.0, 10, and 1000 statvolt curves at td = 5.0×10−11

sec in Fig. 3 become increasingly wider with increasing A, being approximately 0, 0.07π,
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0.16π, and 0.30π, respectively.

Second, the td vs. α curves for increasing values of A become increasingly more alike. For

example, although not shown, we report here that the A = 80, 000 statvolt curve looks nearly

identical to the eye to the A = 1000 statvolt curve; only by zooming in somewhat would

one detect a difference. Indeed, from Eqs. (11) and (9) one can prove that α+ → +π/2 as

A→∞. Evidently, the shape of the td vs. α curve, for ω = ωc, as in Fig. 3, also goes to a
limiting shape as A increases.

Third, it is interesting to note that for large values of A the places of td ≈ 0 are near

α = −π/2. For smaller values of A, such as for A = 6 statvolt in Fig. 3, a region of values
of α exist where td > 0; however, outside this region, one can see that td ≈ 0, meaning that
immediate decay sets in at the start of the simulation. In Fig. 3, the region of nonzero td

values for A = 6 statvolt extents roughly from α = −0.14π to α = 0.33π. It is interesting
to note that the results from simulation of points where td curves go to zero on the left side

of each peak, appear close in value to the position of the “unstable” infinite td peaks for α−,

ω− that can be calculated analytically.

For A À Ac, then as seen in Fig. 3, a very symmetrical pattern occurs about the

horizontal axis in Fig. 1, with the longest decay time at α ≈ π/2, and the shortest decay
time occurring at α ≈ −π/2. Figure 5(a) shows a way of organizing the effects of α on

td for this situation of AÀ Ac, where each pair of initial angles α, such as would be given

by A and A’, B and B’, etc., in Fig. 5(a), have nearly the same value of td (for A = 1000

statvolt), as well as nearly the same radial oscillatory amplitude. More specifically, for

A À Ac, a curve of r vs. t, as in Fig. 2, has an initial oscillatory amplitude that is nearly

zero for α ≈ π/2; this is also the point at which td is largest. Similarly, for α ≈ −π/2,
the initial oscillatory amplitude is at its largest value, with orbital decay setting in almost

immediately.

Figures 5(b), 5(c), and 5(d) each compare the same “mirror” angles of α = −π/4 and
α = −3π/4 in Fig. 5(a), and show how the r vs. t curves are nearly identical looking for
AÀ Ac [i.e., Fig. 5(b) with A = 1000 statvolt], but become progressively more different as

A is decreased in Figs. 5(c) and 5(d), in correspondence with what we should expect from

Fig. 3.
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IV. ANALYTIC ANALYSIS OF td

We now turn to a more detailed analysis on the time to decay, td. In Ref. [15], we showed

that by expressing r (t) = a + δ (t) and the polar angle θ (t) = ωt + φ (t), where |δ/a| is
treated as being small compared to unity, and likewise for

¯̄̄
φ̇/ω

¯̄̄
, then simplified and more

easily analyzable differential equations in terms of δ (t) and φ (t) can be obtained than those

of Eqs. (2) and (3). Several levels of approximation were discussed in Ref. [15], with what

was called the “P2” level being the simplest approximation found that still provided a fairly

good level of accuracy in most cases. In particular, case P2 predicted the key features of

the oscillatory radial motion, namely, the increase in oscillatory amplitude with time, and

the rapid change to orbital decay. The P2 set of equations were

φ̈+
3eA

am

Ã
1 +

2φ̇

3ω

!
cos (φ− α)− 3 (ωτ)ω2 − 7 (ωτ)ωφ̇ = 0 , (12)

combined with δ(t)
a
≈ − 2

3ω
φ̇ (t), and the initial conditions of φ = 0, φ̇ = 0, and δ = 0 at

t = 0. These two equations and the initial conditions will enable us to make a simplified

analysis of the transition point behavior at decay.

Figure 6(a) shows φ (t) vs. t near the orbital transition region of decay when A = 1000

statvolt and α = −π/4. At each peak, of course φ̇ = 0, and φ̈ < 0. As can roughly be

seen, as the transition point to decay is approached, each peak becomes wider and wider,

which means that the curvature becomes increasingly smaller, or
¯̄̄
φ̈
¯̄̄
tends to zero. [This

property of the peaks of the φ vs. t curve gradually becoming wider and wider, the closer

to the transition point, was first pointed out in Ref. [15]; see Fig. 4(c) in Ref. [15].] Thus,¯̄̄
φ̈
¯̄̄
decreases in magnitude from points A→B→C, with φ̈ < 0. At point D in Fig. 6(a), the

transition point, the curve roughly goes through an inflexion point, with φ̇ ≈ 0 and φ̈ ≈ 0.
This condition can be used as an approximate condition for calculating td.

From Eq. (12), with φ̈ ≈ 0 and φ̇ ≈ 0, then cos (φ− α) ≈ ω3τam
eA

, or,

φ (t = td) ≡ φtran ≈ α+ cos−1

µ
ω3τam

eA

¶
. (13)

For A = 1000 statvolt, a = 0.5 Å, and α = −π/4, then Eq. (13) predicts that φ ≈ 0.78 at
point D in Figs. 6(a), which agrees well with numerical calculations [see Fig. 6(b)].

Further insight can be gained if we define ∆ (t) to be the angle at time t between the

velocity vector v (t) of the electron and the force vector (−e)E (t). For the geometrical
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situation chosen here (see Fig. 1), where the counterclockwise angular direction is taken to

be positive, the particle starts at x̂a, and v (t = 0) is along the ŷ direction, then v (t) is at

an angle θ (t) + π
2
with respect to x̂, while (−e)E at time t is at an angle with respect to x̂

of α+ π
2
+ ωt. Hence:

∆ (t) =
h
θ (t) +

π

2

i
−
³
α+

π

2
+ ωt

´
= φ (t)− α . (14)

The initial value of ∆ at t = 0 is −α, since φ = 0 at t = 0. The angle ∆ (t) will initially
vary between two points in Fig. 7(a). In the case of A À Ac, if α is initially at point

K in Fig. 5(a), then ∆ (t) will initially oscillate roughly (not quite, because the problem

is not exactly symmetrical to either side of α = +π/2) between K’ and K, with its center

being approximately at the point of φ = 0, α = +π/2, or ∆mid = −π/2. However, the

amplitude of the range of ∆ will gradually increase, as will, accordingly, the amplitude of

δ (t), as observed in Fig. 2(a). Decay then sets in when ∆ (t) reaches the value of, from

Eqs. (14) and (13)

∆ (t = td) ≡ ∆tran = cos−1

µ
ω3τam

eA

¶
. (15)

Figure 7(a) illustrates the above, while Figs. 7(b) and 7(c) zoom in to show different aspects

of the ∆ (t) vs. t curves.

As noted in Ref. [15], in the P2 approximation, the terms

φ̇

·
2

3ω
cos (φ− α)− 7ω2τ

¸
.

in Eq. (12) are the origin for the increasing amplitude of oscillation, the increase in peri-

odicity [one can discern the latter feature in Fig. 7(c)], and the rapid transition to orbital

decay. If it was possible to force these terms to equal zero, then case P2 will reduce to the

approximate case O analyzed in Ref. [15], which predicts the initial oscillations very well,

but never changes the oscillation shape and just continues on forever without orbital decay.

This insight offers another way to investigate situations in Fig. 3 where near infinite td

occur. Forcing φ̇
£

2
3ω
cos (φ− α)− 7ω2τ

¤
to be zero cannot be accomplished with one fixed

value of α if φ is changing with time. However, it can be accomplished if φ is made to be

constant, by forcing φ̇ = 0. The above term will then equal zero and the radial oscillations,

via the P2 approximation of δ(t)
a
≈ − 2

3ω
φ̇ (t) , will then not change; r will then remain fixed

at r = a.
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Since in the situations examined here, φ = 0 at t = 0 , then we can find the condition to

make Eq. (12) result in φ being constant for all time by substituting in zero for φ, φ̇, and

φ̈. Equation (12) then reduces to

3eA

am
cos (−α)− 3 (ωτ)ω2 = 0 , (16)

or, from Eqs. (1) and using ω = ωc, since that was the basis of case P2 in Ref. [15], then

α = cos−1

µ
Ac
A

¶
. (17)

This result agrees nicely with our earlier exact result of Eq. (11), since, as analyzed earlier

from Eq. (10), ω ≈ ωc. Moreover, this analysis provides us another insight for points in Fig.
3 that lie near, but not right at α = α+, namely, that when φ̇ is small, which translates in

the P2 approximation to δ(t)
a
≈ − 2

3ω
φ̇ (t) being small, or the radial oscillations |δ/a| ¿ 1,

then we can expect a long time td before orbital decay sets in.

V. CONCLUDING REMARKS

The present article began by noting that there exists a far larger range of conditions of

infinite stability for a CP plane wave acting on a NR classical hydrogen atom, than the

single case of α = 0 and A = Ac that was noted in Ref. [13]. Specifically, for each value

of A > Ac, there are two values of α such that a circular orbit will continue indefinitely

in the highly idealized scenario described in the present article. If this classical scenario

represented physical reality, then only one of these values, the ω+, α+ solution, would be

readily observable, since any small deviation from the ω−, α− solution appears to lead to

near immediate orbital decay.

We should also clarify further the meaning of the “stable” solution of the ω+, α+ result,

since any “noise” or other slight perturbation that enters the system, as of course would

happen in a real physical situation, alters this otherwise perfectly aligned situation and

appears to eventually lead to decay. Nevertheless, the size of td will still in general be

quite large for small deviations from the idealized solution of ω+, α+. Figure 3 helps to

understand this point, since the simulations carried out in Fig. 3 did not use ω+ as the

frequency of the CP waves, but rather ωc, which is slightly different than ω+. We note that

the widths and locations of the peaks of td vs. α in Fig. 3 are quite interesting. As A

approaches Ac, the width of the peak of td vs. α becomes infinitesimally narrow.
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Although we have not pursued the following idea in any sort of detail yet, it seems quite

reasonable to us that most of the results analyzed here for circular orbits can be generalized

to the more complicated situation of elliptical orbits, just as occurred in Refs. [13] and [14].

Reference [14] deduced the plane wave spectrum that would be required to overcome the

radiation reaction effect to maintain an elliptical orbit, then turned to find the unexpected

nonlinear behaviors that occur as the amplitudes of this plane wave spectrum were scaled.

Likewise, we expect to find equally interesting results as phases are systematically altered.

In turn, these relatively simple changes (e.g., scaling of amplitudes and systematic changes

of phases) of electromagnetic radiation acting on the classical hydrogen model are but small

subsets of the infinitely rich range of radiation conditions that could occur in a normal phys-

ical environment, in part from what an experimenter might ingeniously impose, as well as

what naturally exists due to thermal and, more generally, nonequilibrium radiation condi-

tions. Many recent experiments have already been carried out to examine such behaviors

for actual Rydberg systems, such as in Refs. [8] and [23].

Finally, we wish to end this article by briefly mentioning other interesting nonlinear

phenomena of this classical system. First, in Fig. 8(a), two CP plane waves were chosen to

influence the orbital motion; their angular frequencies were selected to be slightly different,

but close to the initial orbital angular frequency of the classical electron. As can be seen,

“jump-like” motion was produced. It should be noted that approximately 10,000 orbits (the

orbital period is about 1.4 × 10−16 sec for r = 0.5 Å) occur for this simple scenario before

the onset of orbital decay. During this time, four very clear and relatively rapid “jump-

like” transitions occur. Adding more plane waves with similar changes in frequency can

readily create an increase in jump-like behaviors, with larger jumps becoming more likely

the larger the amplitude of the CP plane wave. Figure 9 illustrates this point of increasing

the number of CP plane waves and its effect on quasi-stability. The quasi-stability region,

up to the point of orbital decay, increased from about 1.4×10−12 sec to about 5.0×10−12 sec

between Figs. 8(a) and 8(b), while the number of small “jumps” increased from four to

about 25, and the number of orbits increased from approximately 10,000 to 36,000. Figure

8(b) is particularly interesting, in that it provides a conceptual way to see how stability can

be roughly maintained, yet a region of radial dimensions can be sampled in a diffusion-like

pattern.

Figure 9 illustrates “resonance-like” properties of plane waves acting on orbital motion.

14



Our earlier work in Refs. [13] and [14] analyzed related aspects of this phenomena for

circular and elliptical orbits, respectively. One curve in Fig. 9(a) represents the case where

an electron starts in a circular orbit of radius 0.525 Å, with no plane waves acting (A = 0),

so that steady orbital decay occurs. The second curve in Fig. 9(a) represents a similar

situation, but now where a CP plane wave is constantly acting, with A = 100 statvolt,

α = 0, and an angular frequency corresponding to an electron in a circular orbit of 0.5 Å.

As can be seen, as the electron’s orbit decays from 0.525 Å to 0.5 Å, the effect of the CP

plane wave on the orbital motion becomes increasingly more pronounced, resulting in a

jump-like behavior near r = 0.5 Å, followed by a continued fluctuating decay in orbit, but

with fluctuations becoming increasingly smaller as the electron’s radius steadily decreases

below 0.5 Å. Interestingly, the two radial curves for A = 0 and A = 100 statvolt are quite

parallel to each other, aside from the fluctuating and jump-like behavior of the A = 100

statvolt curve.

Figure 9(b) shows three curves pertaining to three different situations, each one where the

electron has been “dropped” in a circular motion from an upper radius value, then allowed to

decay to a lower radius while in the presence of a single CP plane wave, withA = 100 statvolt

and α = 0; in one case the angular frequency of the CP plane wave corresponds to a circular

orbit of radius 0.50 Å as in Fig. 9(a), while the other situations have the CP plane wave

frequency corresponding to circular orbits of radius 0.49 Å and 0.48 Å, respectively. The

y-axis of Fig. 9(b) represents the magnitude of the fluctuations of the radial motion [i.e.,

each peak minus each succeeding minimum in curves like the A = 100 statvolt trajectory in

Fig. 9(a)]. The intent of this figure is to attempt to characterize the “resonant-like” effect

of plane waves acting on the electron’s motion. As can be seen, the “response” in Fig. 9(b)

is sharply peaked. We note that this response is a very nonlinear function, depending on

several factors, including the radius and the amplitude of the CP plane wave. We intend

to report on these effects in more detail in future work.

We have found such resonant, jump-like, and diffusion-like behaviors as seen in Figs. 8 and

9 to be fairly easy to produce, as well as a range of other interesting nonlinear phenomena,

such as “catching” the electron, “kicking it” [24], [4], [23], etc. All of this work we expect

to lead to greater understanding and insight into both practical technological possibilities

as well as very basic and fundamental physical ideas. Clearly, there are surprising and

subtle nonlinear effects that are difficult to anticipate, even for such simple cases as the
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ones examined here involving simply a single CP plane wave acting on an electron in a near

circular orbit.

Moreover, we have carried out numerous other simulation experiments attempting to go

well beyond these simpler situations, by investigating the possibility of simulating the effect

on the classical electron’s motion due to the hydrogen Coulombic binding force plus classical

electromagnetic zero-point radiation, as well as due to other radiation fields of interest.

In work to be reported elsewhere [21], we describe our simulation results to date for the

classical hydrogen atom in the presence of classical electromagnetic ZP radiation. Most

notably, this work has yielded a probability density distribution for the classical electron in

close agreement with the quantum mechanical ground state of hydrogen from Schrödinger’s

wave equation. Figure 10(a) shows a typical trajectory of a classical electron based on this

simulation work, from which probability density distributions were calculated in Ref. [21].

The number of plane waves in the simulation of Fig. 10(a) was enormously larger than our

earlier simpler examples in Fig. 8, namely, this simulation involves ≈ 2.2× 106 plane waves.

The distribution of amplitudes and phases for these plane waves was chosen to represent a

section of the classical electromagnetic ZP radiation spectrum. As can be seen in Fig. 10(a),

the classical electron maintained a quasistability behavior, in that it’s orbit did not collapse

into the nucleus nor ionize to infinity; however, it’s quasistability occurred in a stochastic

manner, with it’s radius gradually increasing and decreasing due to the radiation’s effect on

its motion.

Figure 10(b) shows more recent simulation results that differ from those of Ref. [21]

in that a “window” algorithm approximation described in Ref. [21] is not imposed. The

simulations in Fig. 10(b) only go out to about one-hundredth the time in Ref. [21], yet the

computational time for Fig. 10(b) was about 50% larger than the already lengthy 55 CPU

days reported in Ref. [21] on a Pentium 4, 1.8 GHz, processor (actual time 5 CPU days on

11 processors), due to the difference of the “no-window” versus “window” algorithm. In

Fig. 10(b), an ensemble of nine classical electrons were started at 0.53 Å and tracked over a

time of 2.87× 10−13 s, 4.48× 10−13 s, 8.20× 10−13 s (about 2000, 3000, and 5000 revolutions,

respectively) corresponding to each of the three curves in Fig. 10(b). As can be seen, the

ensemble average is marching nicely toward the expected ground state distribution calculated

from Schrödinger’s equation, which we expect to find once enough orbits have been tracked

over to correspond with the longer runs in time in Ref. [21], where indeed this ground
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state distribution was obtained. We expect to report in future work on the full results of

this simulation experiment as well as considerably more extensive experiments presently in

progress.

Undoubtedly, such results will come as a surprise to most physicists, as only classical

electrodynamics is involved in these simulations. We note that the work discussed in

the present article, as well as in Refs. [13], [14], [15], was critical in terms of developing the

ideas and methods for carrying out such investigations to compare classical dynamical effects

with quantum mechanical predictions. The work of the present article, which identifies the

much wider range of stability conditions for the classical hydrogen atom under fairly simple

applied radiation conditions, may well serve as the very beginnings for exploring statistical

mechanical-like ideas for stability conditions that result in the ground state probability

distribution found in Ref. [21]. These results cannot help but re-awaken the idea that the

main basis of SED theory may in fact be correct [16], [17], [18]. Clearly, though, far more

work needs to be done to examine all the other aspects of quantum mechanical phenomena

for atomic systems, before this conclusion can be made; we are presently pursuing such

investigations. Whatever the outcome, it should be quite clear that the range of classical

physical behavior is extremely rich, as already revealed here by the very simple consideration

of a classical charged particle in a near circular orbit about a classical nucleus, while acted

upon by a single CP electromagnetic plane wave.
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Figure Captions

Figure 1: Diagram at t = 0 showing the initial orientation of the velocity vector v, the

electric force from the plane wave (−e)E, the Coulombic binding force −e2r/r3, the negative

of the centripetal acceleration times the mass, mω2r, and the radiation reaction force [Eq.

(5)], when the classical electron is beginning a circular orbit of radius a. By carefully

selecting α, for A > Ac, and by choosing the frequency ω of the plane wave to match the

orbital motion, then a perfect balance can be achieved.

Figure 2: (a) r vs. t for the classical electron in the scheme starting in the orbital

condition of Fig. 1, with A = 300 statvolt and α = −π/4. The pattern shown here is

fairly typical, namely, the amplitude of the radial oscillations gradually increase, the period

also gradually increases [better seen in Fig. 2(b)], until finally orbital decay sets in. (b)

A blown-up view is shown of the r vs. t curve in (a), near the point where orbital decay

sets in. td, as indicated, is defined in this article as the point where the radial oscillation

only rises to about the halfway point of previous oscillations, before beginning a steady,

oscillatory decline. Up until the decay point, the period and amplitude of the oscillation

gradually increases. The peaks change shape due to the nonlinear behavior, until finally

the transition occurs. After the transition, the oscillations become smaller and smaller.

Figure 3: Plot of td vs. α, for several conditions of A = 5.419, 6.0, 10, and 1000 statvolt.

The points indicated along the curves were the ones actually calculated, using the method

of Fig. 2(b). The dotted lines drawn were curve fits, put in to simply illustrate the trends

better here. As analyzed in Sec. II, each of the curves have a near infinite peak for td. The

peaks were drawn in here knowing their proper location from the analysis in Sec. II, but

they where also verified by using these calculated peak positions in simulation runs to verify

that td does appear to be infinite at these locations.

Figure 4: Plot of r vs. t with one CP plane wave present, attempting to numerically

simulate one of the α−,ω− situations. The initial radius was 0.5 Å. The conditions imposed

on the CP plane wave were A = 1000 statvolt, along with the values of α− and ω− as

calculated from Eqs. (11) and (9). The adaptive time-step Burlisch-Stoer algorithm from

Ref. [22] was used to compute r vs. t, for the different indicated relative precision conditions.

As can be seen, even when a relative precision of exp (−30) was imposed, the algorithm still
only predicted that r ≈ 0.5 Å up to about 4 × 10−14 sec, whereas the analytic solution
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predicts that r = 0.5 Å for all time.

Figure 5: (a) A schematic figure is shown here to help better illustrate the effect of α on

both td as well as the amplitude of the spiralling motion, for the situation when A À Ac.

Each pair of mirror points, such as A and A’, B and B’, have nearly the same value of td

for AÀ Ac. Figures 5(b), 5(c), and 5(d) contain plots of r vs. t, for a = 0.5 Å. Each plot

contains two r vs. t curves, one for α = −π/4, and one for the “mirror case” of α = −3π/4.
(b) A = 1000 statvolt; (c) A = 300 statvolt; (d) A = 100 statvolt. As can be seen, as A

decreases, the behavior between the α = −π/4 and α = −3π/4 curves becomes increasingly
different, in agreement with Fig. 3. For A = 100 statvolt, the α = −3π/4 curve isn’t even
stable. Also apparent is the decrease in amplitude of the spiraling motion, and the decrease

in td as A decreases.

Figure 6: Plots of φ = θ − ωt are shown here for the case where A = 1000 statvolt,

a = 0.5 Å, and α = −π/4. (a) The main curve to observe here is “Case E”, where φ (t) vs. t
is shown for the “exact case”, solving Eqs. (2) and (3). However, cases P1, P2, and O, which

are different perturbation approximations discussed in Ref. [15], are also superimposed here

to show how well they compare. (b) blown-up view of the transition point D in (a). φ (td)

is seen to agree reasonably well here with prediction.

Figure 7: Plots of ∆ (t) = [φ (t)− α] vs. t, for A = 1000 statvolt, for several different

values of α. In (a), the “mirror” angles of α = −3π/4, −π/4, as well as α = 0, π, as

well as α = 3π/4, π/4, all have nearly identical values of td, which can be identified in

7(a) by the near vertical lines arising at the decay points in these curves [i.e., ∆ (t) rapidly

increases when orbital decay begins]. Note that ∆ (td) = cos−1
³
ω3τam
eA

´
, from Eq. (15),

agrees well with prediction. Fig. 7(b) zooms into the early time region of 7(a) to show the

differences between the ∆ (t) vs. t curves for α = −3
4
π and −1

4
π, as well as α = π and 0.

Fig. 7(c) zooms in on the last region of the ∆ (t).vs. t curve for α = 1
4
π. Each of these

∆ (t) curves behave fairly similarly. The ∆ (t) vs. t curve for α = 1
2
π can also be seen in

7(c), although its amplitude is still very small. As discussed in this article, if we were to

repeat this examination for smaller values of A, one would see increasing differences in td for

these “mirror” angles, since, as seen in Fig. 3, the td vs. α curves become centered around

different values of α+ other than π/2, as A/Ac becomes smaller.

Figure 8: (a) Plot of r vs. t for the case where the initial radius is 0.5 Å, and there

are two CP plane waves present, both with α = 0. One CP plane wave has A =100
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statvolt, with an angular frequency corresponding to an orbital circular motion of radius

0.5 Å, while the other has A =500 statvolt, with an angular frequency corresponding to

an orbital circular motion of radius 0.505 Å. The two horizontal lines indicate these radii.

As can be seen, “jump” like motion occurs between the radii corresponding to these two

angular frequencies. (b) Plot of r vs. t, as in (a), but now six CP plane waves are present,

all with α = 0. The circular orbital radii corresponding to their angular frequencies are

indicated. These radii and the amplitudes of the plane waves are, respectively: 0.485 Å and

500 statvolt; 0.490 Å and 500 statvolt; 0.495 Å and 500 statvolt; 0.500 Å and 100 statvolt;

0.505 Å and 500 statvolt; 0.510 Å and 500 statvolt.

Figure 9: (a) Plot of r vs. t for two situations, both where the electron starts at r =

0.525 Å, but one where no CP plane wave is present (A = 0), while the other case has a CP

plane wave present with A = 100 statvolt, α = 0, and an angular frequency corresponding to

an electron in a circular orbit of radius 0.5 Å. (b) The maximum radius minus the minimum

radius for each fluctuation in the r vs. t curve in Fig. 9(a), versus r, are plotted here for

three situations. In each case the electron starts out in a circular orbit, with a CP plane

wave acting, with A = 100 statvolt and α = 0; the three curves are due to the presence

of a single CP plane waves of angular frequency corresponding to a circular orbit of radius

0.48 Å, 0.49 Å, and 0.50 Å, respectively. As can be seen, these “response” curves are sharply

peaked. Changing the amplitude of the applied CP plane wave changes the magnitude of

this response, although the shape stays fairly similar for A not too large.

Figure 10: (a) Plot of r vs. t for a classical electron starting in a circular orbit of radius

0.53 Å, with≈ 2.2×106 plane wave acting during the simulation. The amplitudes and phases

were chosen at the beginning of the simulation and then held fixed throughout the remainder

of the simulation. The values of these amplitudes and phases were chosen to represent one

stochastic realization of a section of the classical electromagnetic ZP radiation spectrum.

Ref. [21] discusses the specifics in more detail. (b) Nine classical electrons were tracked in

time, each starting at 0.53 Å in a circular orbit, but then subsequently not constrained. A

different realization of the classical electromagnetic ZP radiation spectrum was assumed for

each simulation, although all had 771, 692 plane waves acting, ranging in angular frequency

from 5.0×1017 s−1 to 4.6×1011 s−1. The top three curves show the times up to which point

the percentage of time was spent at each radius by the ensemble of nine electrons, as each

evolved in trajectories like those in Fig. 10(a). The bottom curve was calculated from the
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ground state of hydrogen via Schrödinger’s equation: P (r) = 4πr2 |Ψ (x)|2 = 4r2

a3
B
exp

³
− 2r
aB

´
,

where aB = ~2/me2. Carrying these lengthy simulations out farther in time, we expect the

histogram curves computed by simulation to converge closely to P (r) = 4r2

a3
B
exp

³
− 2r
aB

´
, as

they did in Ref. [21].
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