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AFPENDIX A: EXPECTATION WVALUE OF ENERGY TEERMS

1. owverview of Calculations

Here, the expectation value of the energy terms in Egs.
[49)=(53) will be avaluated. Finding the first three terms is
not very difficult, while cbtaining the last two terms is much
more involwved. Nevertheless, the details are written out fairly
completely for all of the steps used in the calculations.

One important approximation should be menticned at the
outset that was used in evaluating Usw,g-g and Ups, p-:. and that is
related to the size of the volume ¥ enclesing the particles.
This approxXimation will now bhe described and argued to be a
reasonable one, provided the surface § is far removed from all
particles. Because the follcwing explanation draws on the
explicit calculations of Secs. 5 and 6 in this appendix, the
reader may wish to proceed with reading the following sections,
namely, Secs. 2 through 6, and then subseguently return to the
present one.

In the calculations given here, Uewm, g-a and Ugpa, foan WELE
first expanded as an integral over frequency, as can ba seen in
Egqs. (A25) and (A107). The guantities Ea.,ny and P.3,n; in these
two aguations were then calculated, which in each ¢ase reguired
the evaluation of a velume integral over ¥ [see Egs. (424} and
(A101)]. These integrals were evaluated by converting them into
the sum of a volume integral and surface integral [see, for

example, Egs. (A28) and (A40)]. The volume integrals were



carried out exactly, while the surface integrals were esvaluated
by only retaining terms propertienal tec 1/r®, where r is the
distance from the approximate center of the N particles to a
point on the surface 4. Thus, the assumption was made that the
distance betwen any two particles was small compared to the
distance from any particle te any point on 4.

Howevaer, this step of dropping terms in the surface
integrals that were proportional to 1/r™, for nz3, alsoc appears
to require the implicit assumption that lukr, as can be seen in
the approximation made in Eg. (A42), For any nonzerc value of k,
this condition will be satisfied if the surface J is assumed to
lie at infinity, but for any finite distance from the particles
te §, this condition cannot be met since Uew,g-g 80d Ums,g-sn Were
Wwritten as integrals over all fregquency values.

Nevertheless, there are at least two reasons why we should
expect that the appreximation just mentiocned is a reasonable one.
First, 1f we assume that resonance conditions occur near the
natural escillating frequency &. of the oscillaters, as discussed
in Sec. VI.C, then our main concern in the above approximation is
satisfying luw.r/c., oOur results then apply for any surface .d at
a distance from the particles that 1s large compared with the
wavelength of light l., where A.=c/{2meL).

A second reason existe that essentially includes the first
one: our justification of the dropping of the 1/r= terms, for
nz3d, can be equated with the assumption that when lewr/c is pnot
satisfied in the integrands of the surface integrals in gquestion,

such as in Egs. (A40), (All7), and (Al23)}, then we ohtain a



negligible contribution of these surface integrals ta Egs. (A25)
and (Al07), and ultimately to AUincesnas From Eq. (20). To gee
why this condition should he trqe for reasonable choices of ﬂin,
where by "reasonable" it is meant here that H,. does not become
large as w=->0, we should note thaé for £ far removed from all the
particles and for lur/i., then lewr/e is not satisfied only when
there occurs very gmall values of & in the surface integrals in
questicn. Thus, we are questioning the validity of the ahove
approximation in the very small frequency regime of the integral
exXpresslons for Ue. -8 and Ugss, f-1e in Egs. (AZ25) and (AR107).
Consequently, the wavelengths we are concerned with are on the
order of, or larger, than the approximate radius of the velume ¥
enclosing the particles. The larger we make the approXimate
radius of ¥, the smaller will be the frequency interval over
which the above approximation is guesticnable.

The surface integrals do not exhibit any singular behavior
in the low frequency regime. Mereover, one can show that the
part of the integrands in Egs. (A25) and [A107) that depends on
these surface integrals is not singular as w->0. Consequently,
the error in using this approximation to evaluate Uena, 0-4 and
Ue. -4, S0 A5 to obtain AUincewnsy, should decrease and become
negligible as the size of ¥ increases, since as ¥ increases, the
low frequency interval will become néqligihl? small over which

this approximation is guestionable.



From Egs. (42)=(46),

U, = Z<““=Jsel>
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From Egs. (58) and (15) in Ref. 31,
< E-'aj(Es,“-:' E;-r,ifzh, ‘”:D (A2)
= 207" ol {}:_:mﬂ [5m)8Ceyre) + 5 1) Consual] T[22, )

Substituting, we cobtain

rE:mu.."(m)ZZZS I :

Al B;DA® ) (A3)

{[m(wﬂ [t + [ [ﬁﬁiﬂ] Tm[n (3,1 w)] :

By ALbk AGES A

From Egs. (40}, (45), and (46), we can see that C{-w]=C{w}",
[M{-w)]=[M{w)]~, and likewisge for [M-*(w}]. Alsoc, from Egs. (40)
and (46), one can see that both [M{®)}Jaz,ns and [M™*{®) Jaz.,ns are
symmetric in the indices A and B, and in i and j. Hence, we can

reverse these indices at our convenlence.



From Egs. (34) and (63) in Ref. 31,

I[r2 (5,-3,, )] = -2 Ia[ceamM, ;0]

(AY)

Hence, we cbtain the following result after summing over matching

indices and then relabeling dummy indices:

L]

A ..?rw. 2 Z Ed Rin — r.[M'J] D"]‘j'# +[M"l:[ﬂ-

w 'I.Ci Al

Ac By b A

= SJHJ"L (”?I"”[cmz Z f“ "‘“ﬂ (4

AR = H

- C*[K;,, u}

i E-J:
'E.-"'

(A5)
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For each of the two sets of delta functions in Eg
(=it ) (=iwa) =->» +w®,

. {A2),

The steps for Usxs then follow precisely the
same steps as for Use. Hence,

[Bri= rom .J:.J'L {’w]].'ml-crw;, Z Z [H":’HB(“ ; J ' (A7)

it| -I.J"'J Air



q. Calculation for Uk, fa-fla

Uem, et = Z 35 355K Eaoai0)i By (50 + By, 50 -Bo ,6. |

ATy Fd

Here, E;Lﬁji,tj and ﬁ¢hh[§;t} are the parts of the fields of
elagtric dipele A that are proportional to 1E-E;|'l [see the
brief remarks after Eg. 5, after Eq. (21}, and before Eg. (38)].
Thus, these terms are given by the same form cof expressions as in
Egqs. (38) and (39), but with ﬂf, ﬂndlpﬁ, replaced by ﬂf; and

Ao
Pia . wherea

(kR
Lo ¢ 2 _ RR,
N (R, ) k(8. —f)-fr : (A9)
ﬁh =2, % '3 H t.-h.u.
Fid w) = K A Y o
JﬁJ ( A ) EE;EJJJ; R i CAIo)

These eXpressions can easily be deduced from the 1R terms

resulting froem BEgs. (40) and (41).

Consequently,
<Eﬂﬁ.ﬂ.{x" .ﬁ-u A{'x *]> : (AH}
r o -1.l'n"f 1 -:'l:.-.}:l‘[' & o 3 B, L= g i

< .-lﬂﬂ- [:’?i f;lh 1n .-1(':*}> : (ﬂ”}
g U [T T D560,

1]

From Egs. (44)-(46), and using Egqgs. (A2) and (A4) in the

following steps, yields



(52, (e) 55, (e

=(s;}1f S [~te)] [ m<i (3, )E, (Z,,0)

By=y mary  AjiSm ARD

¥ iy - (A13)
= 'E-ME"'_ Z z S-ultr-' kfn{uj ‘-.I_-,._l {:fu}[ﬁfw}} -J _L_‘.t. 5
v gn) 1C]

7
Bp=1 mn71® - B

]( H-*{u:lj [M '{wﬂ .Ei'w H}E{H ﬂ-.r;" !h {'L-:I].-P’] f,,_-'j;r ,ﬂ'wr.puj Efui-u} .
AL B Ak a Ayt B Ak DA
Substituting Eg. (Al3) into Eg. (All), summing over matching

indices, and gathering terms, results in the following steps:

CE .0 Byl er>
=-7e fmi;j Z Z clm) - C'[m)° }.

BY= |f;l b Bn PR

{[P‘;thﬁlﬂ (-3, (33,9 + [T o] 1 et I63,)

3
- L I Fil's oo, ¥
O R LRI )

If we now relabel the dummy indices by k->7, i-»1, 1i-:1,
then

311- Sdﬁ{ E.-E' 4[1“*} (-‘i ‘!‘)> f;-‘!lFE'J
= fdwﬁl ru}Im[mi[m m_] {_ .L.Z gl(gam (- u::n (x-3 “39}}

l.‘!

Repeating similar steps for the magnetic field correlation

term, gives the same expressions as in BEgs. (Ald4) and (AlS5), but



&
with ﬂﬂ“ replaced by ',pi: . Hence,

s {5 B (%) By, (1))
=‘?:f::|'wj: fﬂ:n[ [MTJ {m;fﬁf fd%‘,?‘aq( E “‘}ﬂ' 'l(’”:. ”‘D}J A

Let's now carry out the volume integration in Egs. (AlS5) and

(Al6). From Egs. (A9} and (Al0), with R=X-Z%., gives

i .Ed?fkﬂ : (Ir" an-Enﬂ(x u) Z S.j;y. K (I -HJH,,)(JE_FEE 'é'i

2= i
= K [ - SRR
i : I%-2,]*
|%-2,1°

CA1T)

1

1 3
Z [R50, ) = 2 (B KD G B 2 ¢ e

3
r
A= =y H_Iﬂr H.i
3

) Bofa (5

AT R U "M
[5 lf E,.,,} f.!t EA J
|=- &,I°
I%-Z,|*

h—w

- K. 55

v
= k! (2%
+ (A18)

Thus, both gquantities above are agqual. If the volume ¥ is a
sphere with radius R and with E,.. at its center, then the above
guantities equal

k*6.4(Bn/3)R.
Alse, the guantities in Egs. (Al17) and (Al8) are real, so the
"Re(...)" operation in Egs. [(Al5) and {hiﬁ} are hot necessary.
We see that the electric and magnetic field energies in Egs.

(A15) and (Al6) are equal; for a spherical volume I:'Ir", they are
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proportional to the radius of V.

our final result is

Uﬁﬁﬂ,,ﬂ.,ﬂ_k = fdn-..i{ () L Eﬁz Z [H'(u.] (Alh-.:...- ﬂu}J (Al14)

ABT1 %t Al

= KN o g ff'?ﬂ;fﬁ‘-iﬂ;
’J&aﬂ" 25y gd"( £ |%-Z,1° J . (A20c)

1"’ —
ZZ 1

wherea

I
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5. galculation for Ue., g5

I"-J
UEH,B—,E = dx <E£ (371): E:Baf’ g + B'ﬂdfnf} Ejﬂfxt]> (A1)

,E-t 1r
A#p

Here, Bp.. and EE.,. are given by Egs. (38)-(41}.

The first part of the above calculation follows very closely
to the steps used in Egs. (All)-(Al6), except that the two
positions E; and E. are involved instead of just the single
position Eﬁ, and of course the guantities Hf? and pf? must be
replaced by th and pr . Without a great deal of difficulty,

one can show that

Elﬁ;'z"{ Epul(E00E, , (,0) (A22)
= w:fawit (}IME”Z [r‘rﬁ-n] {,;—;w zm(j;‘xn (32 A,m)n'ﬂ* %-Z F,wj)}]

ﬁ_rffri’ E,a,,a (3e) - E“(RﬂfD (A23)
= ?{Aui"f’u}_'{m c“;[m'ﬁJ {WMHE fdxfj (-2, )ﬁ. (-2, ;.;J}}}

where AZBE. The above results are very much analogous to Egs.
{al15) and (Ale).
Combining the above, we see that the following guantity

needs to be evaluated

Eacp; S —;-',-E Jh[ﬂ fx Z, w)ﬂ Z Z ) +J:.'$ﬁr -E;,w) f-—}ifwj]} (A24)

£

for AZB, since Ea..m: aPpears in



L a;(EﬂA{x " E“{x t) + Eﬁﬂfi}t] -Eﬂj{i’,tb

BT ‘

==

= w{duw b () In cr,...} Hf"’ﬂj_!-{:—:ﬂ‘[Eﬂfiﬂi]}:l- (A25)

o

As we'll soon see, E.s,ms 18 a fairly complicated guantity
that depends on the precise shape and size of the volume Y.
However, as shown in the following section on Usw,f-in, the AFEB
terms ©f Eas,ny drop cut completely in the sum of Uew,.p-p plus
Uex,f=1n. Hence, if the reader i1s interested in only the sum of
these energies, which is indeed the important guantity of
interest for this article, then the remainder of this section on
Ugn.p-p can be skipped without loss.

Regarding the two energy terms in Egs. (A22) and (A23), each
term depends upon the size and shape DE'F, but the difference
between them is essentially independent of ¥, at least for large
¥. Hence, instead of directly calculating Eai:,ns;, We can ocbtain
a little more insight into the energy terms by investigating the

following two guantities:

Mu

= _L ﬁ}_ - He, = H¥, =
Qai;o; 2 ‘ﬂ“mé I,_IQ (3- EEwJ n,. {’J-Eth-ij.fn-Eﬂwa&_ x-Ew.,}J LA
2 &
Fﬂ;_;ﬁj = T.E'!a 1{"'3"‘,?9[(-" W))F'L (.u u} 3 [’Hi?}
Thus
EAE‘;EJ‘ = Qﬂ'-'_;ﬁ_}: + 1 F-'q[-';ﬂ-,.l: 3 (ﬂ'q 15}

80 that Qu:,ms; represents the volume integral of interest if we

subtracted the energy terms in Egs. (A22) and (A23), while Fig,ns
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ig the regquired wvolume integral in calculating the magnetic field

energy term in Eg. (AZ3).

Let's first calculate Qusims. Substituting Egs. (40) and

{41) intoc BEg. (AR26), multiplving cut terms, and defining the

guantity
Kl2-2%

o Tle ; (A29)

gt

vields that Qu:,s; 2quals the sum of six terms:

Qﬂé;ﬂ_, H‘Z QATL f (:43&}

wheres

3
Qg = &2 IB(WZ)(WNZ), ()

Ay !'.J
&TE_; = {‘;éh(?; ?;E,,.,} e ; (A32)
.-::t]t, ‘;E‘;_%: E}M@ ? Erg) 3 {'433}
Q:-}g-:'- ‘E_.a_*f I Eap En, i {A34)
SRR Y
{5 2 3 '
Q..l.,-:laj = "‘EL:!' H Z g‘ﬁ"ﬁr }FA)(?EE:E) - I:J-'IEF\
LENTIR
¢ L %
Quisy; 2 %éﬂ'*ﬁ' 2)(7:2) ; (A36)

In order to evaluate the above terms, we'll need the

following identities, which can be obtained by integrating "by

parts" and then converting wolume integrals to surface integrals

where possible:
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Qpiy; = TS 4 (V27T 2,
3 X £
{2 Q6T ) O2 (R2)NE)), P
£ bl . 2=
G::}g.J * Gﬁ.-. BJ _ édﬂfﬁ} E? E#A:]E.xu , ) ( Azs)
G':fﬁ = _:]i_gd.t{:? EM) S &d.ﬂ-Z{ﬁ @' EM) E” : (439)
¥
Here, A is the normal unit vector on the surface J. We then have
that

L ,Lr‘*j {(? Em](v? ) + &K "2 )

1K, (Mezl) + K220
+;‘;§43{{:}2@,EJ AT +<-=J HG’EM}EM
A
'Zf“ @'EM) V. (ﬁ) l:{? ""‘} !

The above volume integral reduces to

{':I‘tﬂé‘;: :: ;31'-.9} #EJ‘; {{?1* H‘J E‘A] [ ( ?I E b Eu H:.) E::J
L (2 [ a3, w)] (A1)

HF"F

g
i ﬁ’{Eﬁ‘EEaLJ

Mow we need to evaluate the surface integral in Egq. (A40).

(Akp)

n

Here, we'll use the assumption described in Sec. 1 of this
appendix, namely, that the surface 4 is far removed from any of
the N dipole-particles. We'll ignore terms in the surface
integral that become vanishingly small as the surface § is taken

farther away from the particles. Further discussion on this

approximation is given in Sec. 1.



15

Let the origin of our ceoordinate system be approximately
near where the N particles are situated. Let r=|§j and F:EE]EE.

Retaining only the largest contributing terms in 1/r, yields the

following approximation:

EPRR AR JRE S VIS

i aqla

II_ 4

z kG exp[iklz-Z,]]
r* ;

Using this approximation, the first and second terms in the

surface term in Eg. (A40) cancel, and we obtain

rl

Suefnce jatagral| o3 RTINS ik R3] -iklH=F)
{i, é,. H:hl;l' ]!= .%j JE*{(""}[("J,'[TL‘ELJ;]E : — Ie y + 8 .r_:]} :

For future convenience, let

Ras = 25~ 24 ] (A¥)
and, of course, Hmn=|fn—fh|.

A particularly convenient coeordinate system to use in
evaluating the surface integral in Eg. (A43) 1s the prolate

spheroidal cecordinate system.®® To make use of this system,

(Ad1)

(A43)

let's introduce primed coordinates *' via a translation vector X,

and a rotation matrix [0O]:

A= e lolEn (A4S

- —
Hence, we can define Z.' and Zn' via

4|

2+ [0, (Av6)
%r Lol (A47)

L L

i
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Let us choose our origin and ceoordinate axes such that E“'and Za'
are located at -Z+.a and +2+a, respectively, so that a=i+Ran.

Adding and subtracting Egs. (A46) and (A47) yields,

%= (2, + Z,) ; (A1)
= [Elgias) . . (A49)

Thus, the primed coordinate system has its origin halfway alcng

the line connecting Z. to E., with its z axis aleong this

direction.

As for the quantities in Eg. (A43),

-2+ 1 G L) (ol
= |x fihl 1 {ﬂ;ﬂ}
£-2,] = |2-al : (As1)

Regarding the gquantities ? and r=|i| in Eq. (A43) that appear
outside the quantities exp(ik|%-2.|) and expéik|X-Za|), we can

safely approximate them by

o P
g T G e e A LAER]
S PR AFT R - (A53)

More specifically, we're assuming that the surface £ is
sufficiently far from all particles that the displacement |i;l
required to bring the origin of the priméd coordinate system
midway between twoe particles, is negligible compared to the

distance |i'f to any peoint on the surface. Thus, for example,



{f‘”é:“*‘:;"w 0 {( 2 )[2 L o0 (E)(5) 5]
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the 1/r* term in Eg. (A43) becomes

S I L b - -
T T Telelr T tw['. Q%LJ -

The correction term in Eg. [AS54) just yields other ©f
in BEq. (Rh43).

consequently, Eq. (A43) becomes

(A5H)

1/r2] terms

skl vial ~chlE- Bal
@

i
(A55)

We can now introduce the prolate sphercidal coordinates {see

Fig. 1 on the next page) via the following set of eguations:

X ¥ q.fllnhru.]h'ﬂfvj-ﬂnjfﬂ,} ; (A56)
g = asinhlunlsinfv) sin (g ; (A57)
2'a n L.,,;,l-.q'rh’:l carfv) - l':,.ﬂ. ra }

We can then obtain the follewing relationships:

7+ 30l = alcosifd + cortei) : (A59)
13- 3al = a(csbfu) - cos(e)) : (As0)
s [t ctal : (Ae:)
' = bbb dudvdd : (As2)
ho=h, = alsinits H:qlﬁr’ull]““ : ( Aé3)
hy = asinhlu) siaC) 2 (Asy)

e 2, femddsinbi)] - ot 3. [lew tedsintel]

E

(Aes )

|
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where 8., &,, and e, are unit directicnal vectors for the u, v,
and ¢ coordinates. For a surface £ far from the origin, we see

from above that for points X on A, |X'|=a-sinh(u) = a+}-exp(u).

H

Axiz of rolationnl symmelsy

FIG. 1. Prolate sphercidal coordinates (u,v,¢). Figure
reprinted with permissicn'fram Academic Press, out of

Ref, 5%, p. 104, Fig. 2.10.

consider some volume ¥ surrounding particles A and B, with a
smooth surface 4 that can be described by the angles v and ¢, sc
that the coordinate u on the surface can be described as
Unan(V, ). More specifically, let 4 be a surface such that the

radius from the origin to each point on the surface varies
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continucusly with v and .

As for the guantity de*x'+f' in Eg. (AR5},

fran = (dvdph b, 8. + dudéhh @ + dudvh hd,) . (A6s)

Here, du is related to dv and d¢ by the function u=uU..=(v.¢$) that
we are assuming describes the surface 4. Hence, the implicit

assumption in Eg. (A66) 1is that

= Peae g, 4 ghﬂ dg : (A7)
A 4

From above, for points on 4,

B 5ex - Lol ity ) rin(ddvdf = sinh(pedias) ) dud ] (468)
Ji.]] fI;HhtrMm} T uJ:I'{V}] oy :

This gquantity appears in Eg. [(A55). For large U..., the
denominator above is approximately sinh?(Ume.). The second term

above contributes negligibly to the surface integral under our

assumption of large Uma.=(V.$). Hence,
d'x':'.;' o -i:-n.fh(r.{ﬁ“} I;r{"ﬁ"}dv’dﬂ , ,f]'lﬂﬁl'.}ﬂ"r"'dﬁ p {’Aﬁq)
(7 simhy (Wm i)

Equation (A55) now becomes

! LS w7 _
Senrfan mﬂ?rd} s -_HE ; ikdovcasbe) £ iy
{'-" E. Alo r z Z ﬂehﬂjn fas g‘;”'"':“'}e (I:_;ﬁ ™ J-%n
M=y A= v g
oy b :
g ckTacarlv)
- K &;Sdﬁngrhvt (A7e)
Y S ‘

From Egs. {(AS6)-(A58),
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_i'_'_'] e (] +;:;nn:'r:r.r;nfﬁ,l+ T s () CAT )
® =
for large Um... With 2a=R.s, one can now show that
T iL

(o "
Sdﬁ 5(‘:].,, Finbele q.ﬁiﬂ,uiu' J: H?r:.nfk-ﬁnt} (ATEJ
Hﬂﬁn

L T
fd {avsinta(F) (F) e
a -]

3 { (g CFt) * T ()] (51,4 5:)
| L _E_. cad - 5m
¥ [mjmfhh#} + {kgﬁl:} {hﬂ-ﬁl} f:h’ﬁ,q;:] {H M'}] "i'il-} .

(A73)

Thus, the integral in Eg. (A73) equals zero unless m=n. Also,
its m=n=1 and m=n=2 values are egual.
By now using the identity

Z Ly .ul,. E[j % E]Il.-.i ﬂjl.; i ['-"q ?‘1}

LT |

and realizing from Eq. (A49) that

0 - B (a25)
Haﬂ :
we can shcw that for A#B,
Sl O N NCE () ) (5 - 2 (Rl
A ; i At
(] EI' .-‘1|';i”:I HFIA.E. {HR.;J" d.'l
oo = 3 Bg )i (Rag); :
(; ﬂu Tt ) Eluhi
(KRag )’

= T[54, )]

(A7s)
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The last step follows from Eg. (40) here, or Eq. (16} in Ref. 31.

Ccombining Egs. (A26), (A40), (Ad4l), and (ATE) yields

A-. I = Z 5'1’3 [J"I_ {'-1 u}nJ.j{#* H.-"'") F -E:-: “}‘F;*I'E;,”}J

l‘ 'l.." F
~ -RNy(Z-Z,.) j (AT7)

for AfB. The above relationship becomes exact as the surface A

is removed to infinity.

Consequently, the difference in the electric and magnetic

energy terms in Egs. (A22) and (A23) is given by
ﬁw‘iﬂl<ﬁufat}.au(xﬂ - E_&‘ﬁ{i,t}-ﬁ%ﬂfr,th)
= WEJNEIH{WJI‘“[#%ZE“[H f'u".' { e chn;J(E E w}]}} (A78)

for RA#B. Thus, the difference in these energies ie essentially
independent of the volume ¥, at least for V sufficiently large.

Mow let's turn to Fa.,.ms i Bg. (AR27). Using Egq. (41}, we

chtain

= -ﬁ]fﬂ + thh] ; (A79)

Ai; B g,

where these two terms are given in Egs. (A35) and (A36). Using

the identity of

(?11 Hl)(f ) = = 45 (3-%, : (A8o)
I%-%|
for Z.. in the first term in Eq. (A39), ﬁlus the approximation of

Eq. (A42) for the surface term in Eg. (A39), vields
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(5} S ~KRy
= Eq' K o Vi % — B . A
Gai;;_; _'4'1*7_{ K S,II,LEMEHE Hwﬂe s m;q‘i& “"EHE;] ‘ {',qg]j
L4 AB &

M&)
As fOor Qu.,mi,

. = kwy [ (A2, z,] (Ag2)

At By Y7 ]
where Vz. means to take the 1" component of the gradient with
respect to Ta.
Thus, in order to evaluate Fu:,sns in Eg. (A79), then we'll
need to evaluate the following volume and surface integrals L.

and I, that appear in Eqs. (A81) and (AB2):

I, = Lf’; Z zh: ; (A83)

(A8Y)

4
i
'\...-l'"-..
L™
'hd

3>
'!l-
I“'I-.I
I"-I-.l
]
-

Turning to Iy, the second line below was cbtained by using
the same translatien vector and rotation matrix as in Egs. (A45),
(A48), and (A4%). The third and fourth lines below follow from

Egs. (A56)=(A60) and {AG2)-(A64):

k-3 | -ik|z-7
T = fdue '“:2*'-_:. A2
v |#-Z] Ix-Z,l
g, ikl el -tk [R-Fal
= -dj: L] e

Yo IR4E3al a-tal
- j'dfu. ol 4‘.;5 5 .;1'1 Ir;u'ntf-.,,l-*_l‘,-'..ff"uﬂ_f}n]l I:"u]I_r.',.-.-['--J E.:I'F-l[-ﬂq L Ir(.;f.,.jl]l

b ﬂirfaiiu'f—h]-r-c..rfuj} (h.n'-. o r-:r.l{u})"l
a {dudedg siah (o) sints) exp[2ai keastd ] ; (Ass)
'|-*" :

since (cosh®u - cos?®v) = (sinh*u + sinZv).
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Let us again assume that the surface £ of volume ¥V can be
described by the angles v and ¢, so that the coordinate u on the
surface can be specified a5 Uma(V,®). The volume integral I,

then becomes
v Y (4 #)

I‘I-' T . fu’# fdw n'n{'v)e;l:l-ﬂ r..n.'k-p.ri’v}jfdu.r-'nln (u)
L o &

iT r
-m.;dp j‘ufvr;-.f'-,i' wfﬁmikﬂfﬁ,f?{‘”]‘{“m fv;#,:] o I}
4 &

l:"l'ﬂ.q_' ﬁp-_.rfw_.l'

‘-""’I‘[""'hu'-/"';""]) 7 .I_T[-"'"“‘{“‘u} 3 f‘.-d.ﬂ}
K

[ e
__{A_u EJ;&} dvsin ) g

since R.a=2a.

We can't proceed any further in evaluating I, without
knowing the precise shape and size of V¥, or, more specifically,
without knowing Ume=.. A8 an example, however, just to see how
the energy term of Eg. (A27) can depend on the size of V¥, let's
evaluate L., when Una.(V,$) 15 a constant. Since we're assuming
that the approximate diameter of V¥ is much larger than R.., then
treating Uae.{v,®] as being a constant implies that ¥ will be
nearly spherical in shape, as can be seen from Eg. (A61).. From

Eg. (ABB}, I],.- then becomes
I,ﬂ_ = %.r:.'ﬂf’i.’lal][cul.fuﬁu} - I] - (:*'I.E‘}'}

Thus, under the above cendition, I, 1s roughly proporticnal to
the radius of ¥, since from Eg. (A61) the radius of ¥ is
approximately equal to 3Rin*Sinh(Umesx)=iRan*COSh({Uma.) for large
e -

Turning now toe I, in Eq. (A84), we can follow the same steps

and approximations we used in evaluating the surface integral in
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Eq. {AR40). In particular, with the use of Eq. (a69), I$ becomes

equivalent to Eg. (AT2):

=) :
ik Eacaaiv)

I,‘t o S’E“ {Jv.rllﬁf'-r}'e ; — 'frrinfhfgﬂ (HEE}

3 hﬁ.ﬂ.ﬂ i

Thus, I, is essentially independent of ¥ for large ¥, which was
not the case for IT in Eq. (A86).

Summarizing, we obtain that

7 e %: {.("1‘5‘}' = ?‘-';Fiﬁ } 1 :.] + & Keos (K Ryp) (I;: 5 : (A89)
@

where Iy is given in Eg. (A86). Substituting this result into
Egq. [AZ23), then vields an expression for this magnetic field
energy term. Since I, depends strongly on the size of ¥, then so
will this magnetic energy term. Indeed, for an approximately
spherical volume |, this energy term will be roughly proportional
to the radius of the volume. Moreover, the electric field eneragy
term in Eg. (A22} will behave similarly due to our result of Eg.

(A78]).
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G, ;ﬂlﬂlﬂiﬂm U:lb:,,ﬂ—:.n
6.a. Initial Setup

UEHr.ﬂ-u'n =T ar—'; <E,“f"' E (%¢) + Eﬂﬂfx ¢)-B. (xi)} (A 490)

A=)

Froceeding teo evaluate the electric field correlation part,
(E, (39 -E (302
A i “. Lk 7
S {;Jue””'t-—"'gf*ue : Zn-ﬂ 7%, w} <5i‘ fH}E f‘ﬁ,_,_,‘;> (A9q1)
in =
L] - )=

{33,mE, (5 = 2 o 2'] <E, L2 LOE (=) Gis
Bz A=
From Eg. (A2), we then cbtain t at

ffﬁﬂfﬂ}-f i &)

7
= Dy = L fo
E E_fqru ,ﬂL 7 Er_} z Z [ 1o n,}.{pzmu}:n,n#{a-'@‘,ij] : (A93
E=r l”"jq E;j‘
The magnetic f£ield correlation Pa%t follows similarly.

Howevaer, instead of making use of Eq. (A2), the following

relaticnship is needed:
{’Efﬂ .h( ZF.-' b-"j B,'.., i l:(-rl,. ""':_j>

= w‘faw K, () -_E.-[E{':..ul+u:|'5ﬁ.r1-w}'Er“.‘“}sf“tfmﬂﬂl_&{(iﬂ'i* “J . (A9

L]
This identity can be deduced from Egs. (20) and (21) in Ref, 31.

Consequently,
<‘“f:,f:f B.(7,¢)
gdu £ I.ﬁ[ = ;.E S [M"r:é 2053, ]ﬁtiﬁﬁl-glwﬂ - (A%)

B=i i he

J
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If we make the changes of k-»>3, j-»i, and i-»>{ for the dummy

variable sums, and note from Eqs. (40) and (41) that

—_

n_’&.(.a--z w] = +-n'-&(i-f,w) ’ (Adg)
P,M(E :{w)- *P:.EI:" 5.-“:} 3 {.ﬂq'i',]

then we obtain that
-'.I”lﬂ g‘fm{E..d‘,A{;r*J‘ E'_fi 1‘} i Eg A{; 'E,}E {ri' fj}
¥ o
-_-—njak.,#.?,,{’.-}l'-ﬁ[ﬂjz E[’mﬁ] {,W s ] , (A8

B=i )= Ais,
where

3 i % e
A;;;E #j% gn].'-' [—Lﬂ_ {H %’H}Imn- f.! lj""") f.i! E,q-!”}ﬁ'fﬁr”'zm“}]

our task now reduces to evaluating Pai,a;. Substituting in

for the above imaginary and real parts in Eg. (AS9), ylelds

= I I \
ﬁf;ﬂf 5 f‘l";-ﬁj s f‘:‘liﬂj J {Hlﬂﬂ}
where
7
it A 4, -
K 7 qH.IZE'.I élrd [n {"1 .p.:w)n {" "-'} -ft;{’r"‘z';,”}f;;-{;—z‘g;“.ﬂ 4 (Aiﬂ

3

e 5 ﬁ e it

B ™ " .-F [0l (=3, (57, ) P p2ELEL ] (o
Thus, from Eg. (A24),

I —
-‘H'; E_j 7

E;. (A103)

IJﬁj

As mentioned in the previous section, we will show that the

A#B termg of Eay,ms drop out upon summing Ues.sn-3 a0d Uen, f-in.
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Indeed, from Eg. {(Al03), we'ra close to proving this fact.

However, Eg. [(A25) contains only the real part of E.ii sy, Whereas
Egs. (A93), (Al00}), and (Al103) deal with the whole of Eiiiny. We
can resolve this difference by il{ summing Eg. (A%8) over A, and
(2) using the fact that [M *]aiini is invariant upon switching the

dummy variables A and B, and i and j. More specifically,

Ve, Bein = '”E-"“"“ (] I‘“[cr }HZ 2 [M']Mm{ﬁﬂ: s.:}] y (A

LT LT
[ 7
= sl =i =
.&%ﬂ'r ‘fl,--ﬂﬂ‘\wi J‘ B ﬂ‘ H"I zlabzﬂ?.l i}"l(f ].ﬁ.n:-;h.,ﬁ";ﬂ'} r [H :lLJ';.-'H- '-r;..l:r "“I)
[V |
= ,.Z,z, f?.‘”[h_jﬁ;aj 'iL Ef;ij & T;',..'-M:') . (Mﬂ-ﬁ‘}
- d
From Egqs. (AlO0)-(Al02),
T (i + Tad) - G » RIB5] (Aloe)

Hence, we lndeed obtain
1 h
U:u,.ﬂ-.‘.-. a 'J'I'Edw-q.-.'..f"-ﬂ} Iom| Zpr %r[H' {,.-,L:_, : T Re TE*-'.:LD}J : (Alo7)
thereby showing, via Egs. (A21), {A25), and (Al07), that the
A#B terms of Bas,ms do drop out of the sum of Ugn.p-5 30Nd Usw.f-an.
Thus, for the A#B case, we only need to find Pai,aa.
This guantity looks very much like Qui,ns, a8 can be seen by
comparing Egs. (A26) and (Al0l). As was true with Qu.,asy for
A#B, Pai.ms will turn out to be essentially independent of 'V,
when ¥ 1s large. Let's turn to this A#B case now, and then

come back to the A=B situation later.
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6.b. A#B calculation

From Egs. (40} and (41),

where

AR) £=
T8 Vi IR
Pt & Fal.)
= e "
y B
M= 28K ) (AG2)(02,)
T g=\ Y
(%
A T'Jf;gf;(;f”}(?}.,)

From Eg. (All3),

3

FIIFFEI' k. 5:_,‘ j{t[z é"h{ .} E ?Exu = Yuﬁ' E.A?"E”

Al g Y

oxtlh 2 tkfyg
- Eﬂ[z (o) 2, V] Fop 7 M

Ml F‘-"l!-
Hencea ,

T{4) T (5 ”"'“45

f_“.,f’f:'_r_= SH(M )

Al Ji_,l_,l Rq_g
wharea

L I 3
Yo = g bl ¢ 2 406)

(Aiog)

(Al09)

(Al10)
(All1)
(Al12)
(A113)

(A11Y)

+ HZEJ'L?‘HE”‘] E (J"’EJIF}

(A11§)

('AH;I}
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As will be seen shortly, our main task of evaluating the sum of
integrals in Egq. (Al08} will reduce to evaluating Yams.

Turning te the remaining terms in Eg. (A109)-(All4),
1?|:'|] o f 3 'S
-ﬂq{;ﬁ X ?F,.-?i'r{"l fd f"—'.’! u)‘a?:g}
; g

"KRyg R
?-?-M?EFJ{THZ@xE}E 'i? __,H + K daEuE“}J fﬂ”ﬁ}

FEIw Ras Ty
) * ” T
Fﬂl = f—“j A5G (V: 2,) 2ss T’Hﬂ?ﬁ,;ﬁ. -
1
- Htéa'!(ﬂ};@f EM.} z’n, 5 ?':ﬂj{%éﬂlil EJM 23!} 3 r-'q.H'?J

I'I'I} i N a fa : ] I'I.JL 3
it HEFJ a5 (3); 2,4 Vi 2y - T"'Ii s,,{ﬁ.,g,’“?” 5:',‘,} , (Ai20)

k) 1o ey, ’ Kt x Rvi
Pﬂ.‘;i_; o "%f'”(},a z‘m‘ﬁ 1,g * L‘—.,r'é‘"l Eﬂ?;v.: E#l

Ty K¢ g ), . (AR
KRB, T, ¢ KA, TR, - Ea_{ﬁ (22, 2

£ 4
Adding the above guantities, we cbtain one part where Y.a

appears, plus a term f.:,n; that is a sum of surface integrals:

I () x (1) (1) Tie)
‘ + T S
-Fﬂfl:ﬂ_; ” ﬂ::ﬁ; A By ﬂ:}?ﬂ

= i'.v",{ o Hhne Ym} + B ; (Ar22)
() 2,V 2 }

We can simplify F....; somewhat. For 4 far away from the

particles, we can use Eg. [Ad42) and show that the second term in
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Eg. (Al23) is approximately
o F o
I £ B ) Ty 2o
?ﬂ'ﬁ J ¥

while the fourth term yields its_negativa. The first and third
terms in Eg. (Al22) result in the first and second terms below,

respectively:
5&#;3,‘, = %j“‘i’{-[‘ :'ijiﬁlj + fﬁl'fFJ;]Em Zjﬂ'} ; {",q;ij

It should be noted that when the surface 4 is a sphere, then ﬁ:f,
and £..,ny vanishes. In general, though, the surface term is not
equal to zerc. However, it does become negligibly small when the
surface 4 is taken to be far away from Z. and Ea. Let's assume
for the moment that Ffaii,ms 18 indeed negligible, and then return
te prove this point at the end of this section.

Summarizing froem Egs. (AlO8), (All6), {Al122), and neglecting

E-ﬁ.ilﬂ-.ﬂ i

f‘lfﬂ: K35 Vap + 5_"-) E ?u,( Ag MM) : (Ai125)

i'l

Thus, our problem reduces to finding Y.n in Eq. (Al1l17). Let's

now turn to thils task.

Again, let us introduce preolate sphercidal coordinates,=e

Following the same steps as in Egs. (A85)-(A86) vields
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3=,

5,'.41, En:ir-i;l liﬁii'-f,l

o :
BBt LI

::|=r

= E [; el dvd g - mgf:ﬂ-‘.‘{'ﬂl +3in H“#’H:‘} £inh fu‘lrr'ﬁfv}exp[?nihu:kfu-ﬂ
Lol 7l 1{,{1._#]{% +=wh})(¢,uk{'u.}-u;fvj)

im

" '-'-...,“f oy
La, Edvnr.fv]fﬂ#{ 5 Jujarﬁhf'ﬁ.]' EFP['L‘-‘H hw;hfu}}

o
T

S { 1Hf[2ﬂikhﬂL(mh*#ﬁﬁ#ﬂi - :xr[lnih]

i

L+

™
Xta gaw.nn
m

O

laik Lauk
i
= L'Hr;mh - f_ﬁgdv:h{'ﬂ}Sd+upIhiHu,rI.fu__Nfu,ﬂ)] - CA1ze)
o
» o

Turning now to the surface integral in Y.» in Eg. (AllT7).
the first line below follows from Eg. (A42) and from retaining
terms only proporticnal te 1/r?®, as was done in Eg. (A43). The
second line below follows from introducing the translation vector
and rotation matrix in Egs. (A48)-{A4%), and from following the
steps and approximations accompanying Egs. (A50)-(AS54). The

third line comes from Egs. (A59), (AG0), and (A68):

1*‘3 Yar
, jei Ar27)
£ ‘;-%g.di.-: T?I_FF-' asp Lk(r; tia] 4 .IE'-EafJJ (
= _E_i_ E-ﬂ.ljﬂ fu']i'.l'nlut{‘-l-!‘j' Finiw) dw .d‘-# —~ fll‘il:"r"‘-] ‘ﬂfry}r‘.ﬂt{"} d A J"" Etlk'zn ‘u'l-lrl:"“.}
L e (;r'nsz u) + o f‘-"}}m ;
u=uh_f‘5¢}

Since the denominator is approximately sinh? (Un..) for large
Ummsc; TLhen the second term in the surface integral above will be
negligible compared to the first one and will go to zero as the

minimum value of u on the surface 4 goes to infinity., Making the
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approximation that ceshiu)=sinh(u} in the first integral above,

then yields

* CY

K
e t fa = R §d [ h ] Als
T Z ‘?"“{“Jp Euﬁfn 5 Tg‘“r infe ?HF auilier [*/ &"J} y {/ )
£=1 4
where correction terms to this result vanish as the minimum value
of u on the surface becomes increasingly large.

Combining Bgs. (A117), (Al2e), and (Al2B), vields

thRyg
o C II
T“ o tKe 3 '[""zl {j}
since Za=R.s.
Mow let us turn back te Eg. {Al25). We obtain
1 ﬂ ihﬁ-ﬂ! : “'iltu ;HE,“;
:F_ - =H1£"GHEEH AE* e ) + ?E.E?i.(-lkt + g
ARy Ly ; Rﬂﬂ. A Ep) R
e H_) (*TL L ALl }*‘!
= I+ Hd) ( s kA J"H'ﬂ'.l'lﬁ-
( { ?%ﬁﬁﬁz t K Ju)
Rag
ol d Hie Al30
for A#B.

Combining thisz result with Eg. (Al07) shows that we've now
verified the result given in Eg. (53) for the A#ZE case, except
for our reguired demonstration that fa.,a; in Eqg. (Al22) can
indeed be neglected. Let's now complete this task.

As noted immediately following Edq. {Alij, for a spherical
surface 4, f.ii.=y equals zero. Hence, we can add to our

expression for £..,»; the negative of the same integrand, but
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evaluated over a sphere that encleses 4. Let's call this sphere

Aoucar: Rewriting Eg. (Al24),

‘;(;‘.m -] Z gal (A {[ ("‘ {’I_ ; ;L‘P{.-,..}] r.il':i.t E*J Lk (%= E}

. thlx = -L, LopEe
13 __‘H Z ‘§ A (2 {[' {’r}-fr} fjﬂ} + & {r:'] I | kI ?q|} l{f‘nfEHJ'
T e 51) :

In the first line above, 2., was approximated by using
1/|%-Za|=1/|%|, and similarly for Z... In the second line above,
the unit normal vector was taken to be pointing inward instead of
outward on &, so the minus sign was added. Let fi be defined to
be along the outward direction on douce.. Via the divergence
theorem, we can then rewrite the above surface integqral as a
volume integral over the volume enclosed between Jouce. and &,

which we'll ecall AV

Lhlz- E‘A] JklR- ?“‘

3
£ _i z .4‘1 AECICTORENCHE } o

E] r1
Using the relationships of
gt L
GVE). = o R AN
one can show that
3 VLS AR N
B LG, 55,6 -
ZV{ 660, » 556 ]
SRS (UTERERTEE PR T
e | ‘i_“ o [%- al J Ili"'i_ﬂl ]f'E.
" Ekh]ﬁ‘aﬁ['!u" H'?'t](s ,-3[":':? fr}j . fA HFJ

r
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The guantity in brackets in the f£irst term on the RHS is

it (OGOE) | BED-GL)

1%-Z,l | 1%-Z,]

For the integrand in Eg. (Al132) integrated over AV, we can safely

approximate the above guantity in brackets by using
1/ |#-Ba| =1/ |%-Zu|=1/|%|. Consequently,

HII J th]]ﬁ ii
= 'i_rEiSfx E‘ ;

A B '17;:“'

A TR AR am;}}
(A13¢)

We wish to show that £..,m;->0 as the minimum radius of §
becomes large. We can demonstrate this result, without carrving
out the full integrations abeove, by noting that the guantity in
brackets in Eg. (Al36) depends on X only through the directional
vecter T . If we ignore this dependence, then we'll be concerned

with the guantity
(KIF=T,) o lE -7y
(dke e
AV n

The 1,/r® factor, plus the os¢illatory behavier with radius of the
exponential factors, are what make this guantity go to zero as J
ig removed far from the particles. More specifically, the above

quantity behaves similarly to

kIRl P e
SJL_E__ = Edd!r Eﬁlﬂnqﬂjdr r E'. @]3?}
P, g s
mu{n-"?-}

where spherical coordinates have been used, the radius of the

surface § has been written as a function of @ and ¢, and the
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radius of Jfoucer Nas been denoted as Coueer. The integral

-IH'."F-

9(8,¢) = f de {_‘f} J (A138)

w{O4)
goes to Ze8ro 88 Fuexl(®,d)=->» and £O0r Ceaxc<Fouserr, 4B can been seen
from Ref. 60 via the following: (a) entries # 2.6322 and 2.6324 on
p. 183 with p=0 and a=2k, (b) entry # 8.3502 on p. 940 with a=0,
and (c) entry § 8.357 on p. 942 with a=0 and, for ekxample, M=1.

Thus, if we examine the magnitude of the guantity in Eq.

[Al137), then
kR it L
| fdn g_ = | fde Sasu.;agu’a, )
mr w
< (ap Sda;,;.srﬂ:?,{s, 8| (A129)
E l{wIﬁﬁF ;
where Jo.. 15 the maﬁimum value aof |3{E,¢}I, Since Jo..—>0, then

we've shown that the magnitude of Eg. (Al137) also goes to zero.

The gquantity £..,s:s in Eg. (Al36) will behave similarly.

€.¢. AsE Calculation

We now need to evaluate the A=B term in the curly brackets
in either Eq. (Al04) or Egq. (Al07). First, it's helpful to note

that
it :
ﬂ-‘;ﬂi = F.:L,-;j = Re [E ‘Jﬂ}] , Eor A=B, (Aryo)

as can be verified from Egs. (A99)-(Al103). HNow, let's break the
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calculation of P.:,as into two parts: namely, IM{Pas,as} and
Re(Pazias). To find IM{Pav,as}, We can use the result of the last
section and let R..-»>0, since Immf;tlh.,w} is not singular as
Raw->0. More specifically, by expanding exp(ikR) in a Tavlor's

series in Eg. (40), one can show that

Giv. T. N (H w) = Y (A4

=g

consequently, from Egs. (Al140), (Ald41l), and (A130),
In(fis) = £ Tn(B5; - RelEiy)
& fiag ™ ©
= (-1+hg) 35K
Y 3
— E'J b h 8
Turning now to Re(Pai,as), from Egs. (A99), (40) and (41},

I

(A142)

ﬁ! (F; J.Llj
= -—-?_’Lﬁ;{"hn {3, u}Iﬁﬂ (3-3, W) + ﬂE..JP (%-2 u}ﬂfﬁff“i.q;w]]

(UV:)(T,V,3) + 160309, + k'8
3
HHS ) (RIS - K(TARE) | (A9

JF=

- fo]

M

where

0 - ::-.{’H_Et“‘i‘ﬂf) (A4y)
I}I'Ej!

We can rewrite the first term in Eq. {Al43) as

J‘ﬁg‘l?‘ﬂﬁ"i’.& é-ﬂn(n AV A7 )-—i

j Y3 v: (?'ﬂ!) CAs)
J’P? /
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and use the relationship

i W B R (Arve)

Likewise, the fourth term in Eq. (Al43) can be rewritten via
3 3 '& 2 o
i ﬂ’n@&)@. )= E 5;;(:}',:1?;& + K 5“51 . (A7)
in ¥ £=1 4 v
Also, we can rewrite the second term in (Al43) as
(AV93 = §4%@)AV8 - fapa)@r) | (Ary8)
V¥ A ¥

Combining the above,

f(fy,) = ~E S0 - @Y ¢ 550
‘ﬁédi’{{ﬂﬁmﬁm%m*%@% Kd Vi *1#145:);3?3} . (Am9)

Substituting in Eg. (Al44), and again drepping terms that

will vanish with large radius in the surface term, results in:

ﬁrt {f 'l-;ﬂj‘j i E—- d? { - K :.-rr?hr} el Hrc.a:fr:-rj_ri-.{'}tr']-:,‘.‘fh,.}}] ¢ hl“rn'jj}:lf“':\’}

-%é‘ﬁﬁ f{nfh:iurfﬁr]((ﬁ+?}(ﬁu -ﬁ:*:lng};) + 1{:1—{?};) ; {(..-"-’Hﬂ':l)

s el

where we've let TSH-F..

Let's first evaluate the volume integral term above, which

will be called TTi We can substitute

IHrndJrHr}J;nftfj - .I'fqifh_r_} ; : ] r
{ ,.q J = :‘;j‘l—r(’—’:_ff—l) , CAisy)

plus cos®*(kri=4[1+cos({2Kkr)] and sin®*{kr)=&[l-cos(2kr)] into this
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expression. We obtain:

L = _E'é‘ll(_&lfa_iﬂ + %?'_ J":{ (E,,_I-rfr} (7 )cn:{tkr}l + T%- L:“ﬂ) : &”5’1
Since FEE-E;, the first term above is just -J.., from Eqa.
(A20). As for the second term, let us evaluate it by using
spherical polar coordinates, with the surface of ¥ defined by
I=Ina=(9.%). Thus,

n Tl 0,8)
e =g N (aax;ﬁanaqbgar{%tfgu+@;I.r:%.)¢,,,m.; +f‘.~("""3”})}

"“..J T L

T
~ —Jﬁ o + ‘_:1_ dﬂ.ﬂﬁﬁgnf {(ELJ +|:IFJ o }‘):-4{1}“‘ fﬁ'j ﬁ}‘] + 1%12} : (i,q ;53'}

We can neglect the last term above since

£ .'r.zf K rﬁq:l

K Facan

becomes negligible for large rm... MNoting that

dan.f = Jﬁd&,,'ﬁa_(r“urqw:)1 : (Atsy)

for an area element on .4, then T, becomes
A-;J,

A j SR CRICICH EEI IR (Alss)

Combining this term with the surface term in Eq. (A150),

with sin(kr)-cos(2kr)=4sin(2kr), vields

-Rtffq.;;ﬂj)z_"g ; + E}'J Jx:m]'-'!h { J'(""}f“} {L‘}{r} ; fﬂJFFJ
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When the surface 4 is a sphere about Z., then the surface term
above vanishes, since then f=f. In general, though, the surface
term is not equal to zero, although it does become negligibly
small when the surface d is taken to be far away from %.. To sae
that this statement is true, we simply need to note that the
surface term in Eg. (AlS56) is equal to Re(fai,a;) from Eg. (Al24).

Consequently, we've finally shown that

Re (T3, I " Ay (A157)

when the surface & is far from the point Z.. Combining Egs.

(A142) and (Al57) yields

¢ 5L (AI58)

By combining Egs. (Al130), (Al140), and (Al158), we obtain:

i o (]

H\EJ

= s“l'ﬂ(‘.r’sﬁ |.-; + 4:5;;%—“’) + ('"EAB}(-RE[EAHHI' .... .ﬂ-’L;I y {.E-;. _E‘ijg- r“
Together with Eg. (Al07), this result vields the guantity

reported in Eg. (53).
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APPENDIX B: CHECK ON EQ. (66) FOR RJ, ZFP AND ZP RADIATION

Here we wish to show that RJ, IPP, as well as 2ZP radiation,
geatisfies Eg. (66). (0Of course, ZF radiation i1s just the T=>0
limit of ZPP radiation.) To prove this result, we'll need to
axamine the dependence of Im(ln{Det[M])) upon « for small and
large values of w. Now, Im{ln(Det[M])) depends on « through
Mas:ms in Eg. (46), which in turn depends on « through Hﬁ in Eq.
(40) and Clw) in Eg. (45).

From Eqs. (40) and (45), one can prove that for w-=>0, and

for |R|#0 below, then

H}ziﬁ;w} i [ (§; ;BEJRJ’H} . 5;’..,,,}]+:.[ ‘ELJ' G +£'(w’)] (81

Consegquently, in the limit of &->0, the imaginary part of Mas,ms

vanishes. Hence, Det[M], as well as ln{Det[M]) are real

gquantities for w=>0, so

(l"-ﬂ L‘Dﬁ]fmj] o _ (B2)
fa =30
Thug,

) In,ﬁﬁinnfmjj S ook . (83)

for RJ, ZPP, and ZP radiation, since as =30, (h..)}* has limiting

Lrf o

values of kT/n*, KT/n®, and 0, respectively, for these three

cages.

How turning to the t-»m gase, from Egs. (40) and (45) one

can show that for jﬁ|fﬂ,
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ﬂ =l L]
n ._}‘ ( E;“"'} 24 ___F__ {’ -:I;,.'j' = R.: ﬁj f’ﬂ‘} [I.E‘LHF:
Cfl.-‘l';l L-\J'r' Eiﬁ
Since the A#B terms in M..,ss; edqual -e’ﬂ?;ftmﬂ}, then they go

6(5) . @

to zero as 1/w for large «. The remaining matrix elements in
Mis,n; are either unity for A=B and 1=j, or zero for A=R and i#¥j.
Of course, Det[M] consists of a linear combination of all
products of the matrix elements, provided that only cne alement
from each column and row is present in each preduct. For large
w, glearly the largest product term in Det[M] will be the product
of the diagonal matrix elements, which eqguals unity. The next
largest terms in Det[M] result from when all the diagonal terms
in Mai,sns;, except for two of them, are multiplied together, with
the remaining two factors belng the AfE cff-diagonal terms,
-e?ﬂﬁ Fimc). (To see this fact, note that if, say, the diagonal
term from row ¢ is missing in one of the product terms in Det[M].,
so0 as to allow in the product a matrix element from row a and
some column B, where a#p, then the diagonal term from column B
and row B must also be absent and another off-diagonal term
present. )

Hence,

Det[M] =1 + (Q+:B) : (65)

where & and B are real numbers. Writing Det[M] as:he‘“, where
and 8 are real numbers, then we obtain that M=1+@/w?® and ©=0ju=
for large w. Conseguently,

1
fad

Tt Dee f]i= B - gl
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We then have that

ﬁ[@;hJilgﬁﬁet[mjj - e

provided that as w-»=, (h..)® remains either finite, or else
diverges to = slower than as w®. From Egs. (27)=(29), we see

that this condition is obeyed for RJ, ZPP, and ZP radiation.
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A
spectrum}%%%athi{i%ﬁL} ¥ields the RJ and ZPP spectrums for
(]

arbitrary values of T when X->0 and when_w=111 ;, respectively.

“®*See, for example, G. Arfken, Mathematical Methods for
Physicists, 2~ ed. [Academic Press, New York, 1970), Sec. 2.10.

®®I.8. Gradshteyn and I. M. Ryzhik, Table of Intedgralg. Series,
and Products (Academic Press, New York, 1980).




