Networking as a First-Class Cloud Resource

Boston University Wednesday, October 17th, 2018

> Rodrigo Fonseca Brown University

This talk

- Joint work with
 - Da Yu (Brown),
 - Shuwen Sun, Raja Sambasivan, Orran Krieger, Piyanai Saowarattitada, Jason Hennessey (BU),
 - Luo Mai (Imperial)
- More of a *question* than an *answer* !

Cloud Interface Today

- CPU, Memory, Storage: fine grained choices
 - Counted 83 instance types on AWS recently
- Networking choices are a lot coarser
 - Per-VM maximum bandwidth ("up to 10Gpbs")
 - Can specify virtual networks, reachability, firewall rules
 - But hardly any guarantees

At the same time...

- Applications have very different requirements
 - Low latency, high bandwidth, low variance, deadlines, path redundancy, ...
 - Some applications have *less* requirements
 - State of the art is to overprovision BW, pray for latency

Can we do better?

"New" network topologies

CLOS Fabrics FatTrees Randomized Topologies

Credit: Facebook

Fat Tree. Al-Fares et al. 2009

Jellyfish, Singla et al. 2012

New Control Planes

SDN Network Virtualization NFV

Programmable Dataplanes

In-band Network Telemetry In-network caching In-network Paxos

...

New Transport Protocols

DCTCP PDQ, D3, D²TCP pFabric, Qjump, NDP

New Scheduling Algorithms

Coflows FastPass Programmable queueing disciplines

New "crazy" ideas

Jellyfish topology Disco Ball Flywheels Rotornet

...

Much better than the Internet!

Why?	Network Working Group Request for Comments: 1883	R.	S. Deering, Xerox PARC Hinden, Ipsilon Networks December 1995	
Single administ	Category: Standards Track Network Working Group	(IETF)	S. Deering Cisco R. Hinden Nokia December 1998	
	Request for Comments: 2400 O}Internet Engineering Task Force (IETF)			
Really?	STD: 86 Obsoletes: <u>2460</u> Category: Standard		S. Deering Retired R. Hinden	
Most protocols	ISSN: 2070-1721		Check Point Software July 2017	
Cannot coexis	Internet Protocol, Version 6 (TBuch		
Many have never been deployed				

A single datacenter can be more ossified than the Internet!

Lack of Flexibility

Usually uniform topology, congestion control, scheduling Really high bar for new proposals Must be good for *all* kinds of traffic

Providers: offer uniform networking

Tenants: don't express requirements

Maybe we can learn from the Internet

[1] Gregory Laughlin et al., "Information Transmission Between Financial Markets in Chicago and New York", arXiv:1302.5966 [q-fin.TR]
[2] https://www.submarinecablemap.com/

Catch-22

Providers: offer uniform networking

Tenants: don't express requirements

Providers: paths with different properties

Tenants: interface to express requirements

Example: Google B4*

- Mark packets as high priority / low priority
- Achieve near 100% utilization
 - (Trad. 30-40%)

*Jain et al., B4: Experience with a Globally-deployed Software Defined Wan, Sigcomm 2013

Providers: paths with different properties

Tenants: interface to express requirements

FlexNet Datacenter Architecture

Providers: paths with different properties

Tenants: interface to express requirements

Datacenter-assisted *tagging* of packets Out-of-band negotiation Flexible forwarding

FlexNet Interface

FlexNet Interface

Ton	ant	Provider(s)	
ien	"I want all my RPC traj subnet A and B to have <	fic between 10us latency"	
	A. Guaranteed <10us latenc	y (reserved queues) (\$\$\$)	
4	B. DCTCP-enabled path (\$)		
_	"B!"		
	Configure tagging	Provision path	
_	Traffic gets tagged	Tagged traffic routed through appropriate path	
_	Traffic gets tagged	appropriate path	

Flexible Tagging

- Any criterion based on packet headers (flowspec)
 - src or dest IP, port, protocol, or any combination
 - L7 features (e.g., HTTP cookie, header value)
 - Tenant id
 - ...
- Could be done at hypervisor, vswitch, smartNIC, ToR
 - Provisioning can install match-action rules at any of these
- Could be implemented in any number of ways
 - VLAN tags, VXLAN tags, MPLS tags, encapsulated MAC addresses, etc...
- Narrow waist : only thing forwarding elements need to know

"Paths with Different Properties"

- On the same physical network
 - Could reserve bandwidth along a path
 - Could assign specific queues to a tag
 - Could configure all switches on a path to use DCTCP (ECN settings)
- On separate physical network
 - Could deploy pFabric-capable switches along a path
 - Could deploy 400Gbps Ethernet connecting a pair of racks, and provision to specific VMs/tags
 - Could upgrade the network and migrate progressively
- Paths can be offered with different prices

More on the interface

- Tenants usually configure subnets ("networks")
- Our initial thought is to affect traffic among subnets
 - Assumes traffic within subnets is fine
- Could have this reach the nodes' network interfaces as well
 - More on this later

A FlexNet Prototype

Assumed datacenter architecture

Pod-and-core architecture

"Core and pod designs are increasingly recognized as practical adaptations of the hyperscale design approach, applicable to data centers worldwide."

(Hyper-scale Approach)

The Pod

- Atomic unit of compute, networking and storage
- Represents a contained failure domain ('blast radius')
- Single layer or leaf-spine Clos
- May be L2, L3 or a hybrid L2/ L3 inside the pod, but L3 (ECMP) to the core
- Connect to the core via spine, via leaf (more resilient) or via demarc ingress/egress routers (more flexible)

http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf

Current Prototype

- Complete end-to-end prototype
- Northbound portal in Python to negotiate paths
 - Configures tagging (pod), forwarding (EoP), paths (network)
- Commodity SDN switches + OpenVSwitch
 - VLANs at the pods
 - Nested MPLS to select Path
- Evaluation on a very small cluster
 - 3 pods, 4 physical SDN switches virtually split between EoP, Inter-Pod Networks, ToRs are ovs

Evaluation: Memcached + Hadoop

Evaluation: DCTCP vs Cubic

Evaluation: Marketplace

Summary

- Flexnet: flowspec + tagging + diverse paths could break the conundrum
 - Narrow waist: tagging
- Better for tenants
 - Better guarantees, matching application properties
 - Better prices (?)
- Better for providers
 - More efficient use of resources
 - Deployment of niche technologies
 - Opportunity for monetization
 - Get more information from customers' demands
- \bullet Does this make sense to you? Or is today's situation good enough? $\textcircled{\sc op}$

Discussion

- More complex interface (vs. "don't think about the network")
 - Integrate with K8s provisioning / K8s Network Service Mesh?
- What to offer?
 - Measurable properties vs implementation specifics (what vs how)
- "Good enough"?
 - Azure Accelerated Networking (NSDI'18): 30+Gbps, < 15us, "free"
 - We are not restricted to performance properties
- Use cases
 - It would be great to get real use cases from MOC users!

Thank you!

rfonseca@cs.brown.edu

vs. Kubernetes Network Service Mesh

- Similar goals: different properties for network flows
- Example use cases:
 - VPN gateway to corporate office
 - Direct connection to ISP/Telco/Private link
 - Distributed virtual bridges
 - NFV Chaining
 - Security, IDS, VPN
 - Guaranteed latency/bandwidth
 - Load balancing

