
The Future of Enterprise Application
Development in the Cloud –
Collaborative Research Opportunities

Mark Little, VP, Red Hat

Aims of this presentation

●  To identify potential research opportunities between Red Hat and Boston
University
○  In the context of Red Hat Enterprise Middleware

●  Not all research areas of interest to Red Hat but we have to start somewhere
●  Follow up interactions between our teams asap
●  Introduce Boston University to Red Hat communities

○  Much of this work is going to be practice and experience driven
○  Many of these activities are going to be high profile, with interactions across many vendors

and communities

2

DEVELOPERS DEMAND MORE OPTIONS

3

ENTERPRISES EXPAND USE OF LANGUAGES, FRAMEWORKS, &
RUNTIMES

Traditional Enterprise Applications

4

Monolithic Applications
●  Java Only
●  Focus on business logic
●  Appserver “services”. Ex:

○  Configuration
○  Resource abstraction
○  Strict Dev/Ops separation

Provided Infrastructure
●  Centralized logs
●  AppServer lifecycle mgmt
●  Application lifecycle mgmt

Decomposing of services, SOA and beyond

5

Cloud-native “application server”: what, why & how?

6

MyService

Monitoring

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging

Elasticity Spring
Boot

RUNTIMES
(Container images and Maven Artifacts)

JAVA EE
(JBoss EAP)

MICROPROFILE
(WildFly Swarm)

OPENSHIFT SERVICES

REACTIVE
(Eclipse Vert.x)

Tooling

Fabric8
Launcher

Fabric8
Maven
Plugin

Eclipse
Che

Observability

Distributed
Tracing

Metrics

Service
Discovery Config.

Logging

Health
Check

Load
Balancing

CI/CD SSO Messaging IMDG Authenticat
ion

RHOAR – background context for research

Spring Boot Tomcat Node.js

etc.

Resilience API Mgmt

https://dzone.com/articles/big-numbers-comic

8

9

● Defines open source Java microservices specifications
●  Industry Collaboration - Red Hat, IBM, Payara, Tomitribe, London Java Community,

SouJava, Oracle, Hazelcast, Fujitsu, SmartBear...
● WildFly Swarm is Red Hat’s implementation
● Minimum footprint for Enterprise Java cloud-native services (v1.3) :

JSON-P 1.0

Health
Check CDI 1.2 JAX-RS 2.0

JWT
Propagation

Fault
Tolerance Metrics

Config

Open
Tracing

OpenAPI REST
Client

Common
Annotations

My Svc

My
Svc

JAX-RS

$ java -jar my_microservice.jar

 or

$ java -jar custom-runtime.jar myapp.war

Java EE microservices 

● Leverage Java EE expertise

● Open Standard

● Microservices focus

● Optimized for OpenShift

● Super Lightweight

● uber-jar and war support

11
https://jakarta.ee/

This is not the Java EE you are looking for ...

12

Microservices

13

Observability

14

Jaeger
Distributed

Tracing

Prometheus
Metrics

EFK Logging

15

●  Asynchronous APIs allow for more efficient use of process/thread
○  But make programming harder

●  Asynchronous communication has significant impact on fault
tolerance

●  However, we have yet to make parallel programming easy
●  Failure detection impossibility

○  Fischer, Lynch, Patterson (FLP) Result

●  Synchronous programming is still the default in most organisations
and standards
○  With multi-threading, of course

Asychronous, event-driven programming

16

17

Message-based interactions

•  Path for Reactive Microservices for JVM

•  Event Driven Non-Blocking I/O

•  Ideal for High Concurrency and Low
Latency Services

•  Lightweight Messaging

•  OpenShift / Middleware Integration

•  2014 JAX Innovations Award Winner

responsive

resilient

event-driven

scalable

19

●  Eclipse Vert.x 3.5.3
○  vertx-rx-java2 - RxJava 2, Improved reactive support
○  MongoDB / Mongo Client
○  vert.x-sockjs-service-proxy
○  Event Bus on OpenShift
○  vertx-proton - AMQ Client
○  gRPC
○  MQTT module (client and server)
○  Kafka client, Prometheus client, JUnit 5, and

HashiCorp Vault Tech Preview

●  Improved reactive
support

●  Improved
enterprise and
device connectivity

●  Improved
OpenShift Support

Project Loom and Fibres

21

22

Apache OpenWhisk
●  Complete Serverless solution – event driven!
●  Incubating project under Apache Software Foundation
●  Started by IBM but with Adobe and Red Hat as contributors

○  But now there’s also knative

23

Fault tolerance is a key area

●  Machines and software fail
●  Fundamental universal law (entropy increases)
●  Things get better with each generation, but still statistically significant
●  Failures of centralized systems difficult to handle
●  Failures of distributed systems are much more difficult

24

Fault tolerance techniques

●  Replication of resources
○  Increase availability

○  Probability is that a critical number of resources remain operational
○  “Guarantee” forward progress
○  Tolerate programmer errors by heterogeneous implementations

●  Spheres of control
○  “Guarantee” no partial completion of work in the presence of failures

●  Often a duality
○  “Understanding the Role of Atomic Transactions and Group Communications in Implementing

Persistent Replicated”, Proceedings of the 8th International Workshop on Persistent Object
Systems, California, USA,1998

25

Software Transactional Memory

●  Hardware Transactional Memory around since the 1980’s
○  An alternative to lock-based synchronization

●  Software Transactional Memory (STM) proposed in 1995
○  Still an active area of research

●  STM is about ease of use and reliability
○  Access shared state, either for reading of writing, within atomic blocks
○  All code inside an atomic block executes as if there were no other threads
○  Some implementations can be lock free (optimistic vs pessimistic, timestamp)

26

The Actor Based Programming Model

●  The Actor Based Programming Model
●  Actors and CSP have been around for decades

○  CSP from Hoare, 1985

○  Actor model from Hewitt et al, 1973

●  But popular ways to model primitives for concurrent computations
●  Distributed computations communicate via message passing

○  No shared state

27

Transactions and Actors and async … oh my!

●  A stateful actor may go through multiple state transactions upon receipt of a
message
○  Actors share state through message passing

●  Computational failures may occur
●  Hardware and software failures may occur
●  Consistency of state important
●  Composition of actors
●  The combination of STM and Actors is fairly natural

○  But complexity still arises when combined in microservices and the cloud

28

Transaction models for cloud-native

●  ACID transactions implicitly assume
○  Closely coupled environment

○  All entities involved in a transaction span a LAN, for example

●  Short-duration activities
○  Must be able to cope with resources being locked for periods

●  Therefore, do not work well in
○  Loosely coupled environments
○  Long duration activities

29

What characteristics are right?

●  Need to be able to relax the strict ACID properties
○  Need to put control of some into hands of service

●  Is consistency (or consensus) important?
●  May need a notion of a central coordinator

○  But may not!

○  Or something with a fuzzy idea of what’s going on

●  “A comparison of Web services transaction protocols”, IBM Developer Works,
2003.

●  Relaxing atomicity, isolation and consistency
●  Yes, CAP but …

○  https://www.cl.cam.ac.uk/research/dtg/www/files/publications/public/mk428/cap-critique.pdf

30

Heisenberg’s Uncertainty Principle

●  Cannot accurately measure both position and momentum of sub-atomic
particles
○  Can know one with certainty, but not the other

○  Non-deterministic measurements

●  Large-scale/loosely-coupled transactional applications suffer the same effect
○  Can know that all services will eventually see same state, just not when
○  Or at known time can determine state within model/application specific degree of uncertainty

●  Or another way of thinking about it …
○  No such thing as simultaneity in data space as there isn't in space-time

■  “Data on the Outside vs. Data on the Inside”, by Pat Helland

31

No global consensus

●  Split transactions into domains of consistency
○  Strong consistency within domains

○  Some level of (known) consistency between domains
■  See “A method for combining replication and caching”, Proceedings of International

Workshop on Reliable Middleware Systems, October 1999.

■  OASIS WS-BusinessProcess specification, part of OASIS WS-CAF, 2003.
○  Resolve inconsistencies at the business level

■  Don’t try and run consensus protocols between domains

●  Consistency related to isolation
○  Put into the control of the service and application developers

32

33

AI and ML – intelligent applications

●  20 years ago developers needed to understand a lot of RDBMS to use them
efficiently

●  16 years ago Hibernate came on the scene and changed things,
democratising data

●  JPA 1.0 released in 2006
●  2002 Spring Framework released

○  Re-packaged a lot of existing implementations and standards
○  Made J2EE more easily accessible to the average developer

●  2014 Spring Boot 1.0 released
○  Prescriptive approach
○  20 million downloads from maven each month

34

35

“Democratize” Data+Analytics/ML

●  There will be more developers looking to develop “intelligent apps” than data
scientists who can help them
○  Enable the developer to become “just enough” of a data scientist to build apps

●  Consider whether we can even isolate Spark as just an implementation detail
●  Drive adoption through upstream communities

○  WildFly Swarm, Vert.x, Node.js, Spring Boot

36

Conclusions and next steps

●  There are a number of hopefully relevant research areas
●  All can have significant impact on open source developer communities
●  All variable term activities
●  Identify those of interest by this team and designate Red Hat contact

○  Define specific work item(s)
○  Face-to-face meetings may help

●  Success!
●  Systems Research Challenges Workshop 2018

○  http://sysws.org.uk/workshop/2018/cfp/

37

