
RobinHood: Tail Latency-Aware Caching
in Large Web Services

Daniel S. Berger, CMU
Benjamin Berg, CMU

Timothy Zhu, PennState
Siddhartha Sen, Microsoft Research

Mor Harchol-Balter, CMU

Red Hat Colloquium, 9/5/18,
Hariri Institute for Computing.

To appear at USENIX OSDI (October 2018).

Aggregation
server

Microsoft Web Architecture

1

Goal: minimize 99-th percentile
request latency (P99)

R
ecom

m
end

P
roducts

A
d-S

ystem

N
ew

s

R
eq

u
est laten

cy
Backend queries Request must

wait for last
query!

User request

Aggregation
server

User request

What Causes High P99 Request Latency?

2

Better load
balancing?

R
eq

u
est laten

cy Auto-scaling for
backend systems?

already included here

B
5

B
1 B
6

B
8

Backend queries

Based on xbox.com production trace from 3/2018.

Aggregation
server

User request

What Else Can We Do?

3
B

5

B
1 B
6

B
8

R
eq

u
est laten

cy

Cache

Aggregation Cache
Shared among queries

to all backends

 Can we use this
cache to reduce P99

request latency?

Backend queries

Can We Use Caching to Reduce the P99?

4

Existing caching systems do not attempt to reduce the P99

“The caching layer does not directly address tail latency”

1ms

90%

100ms
10%

Instead focus on: overall miss ratio or fairness properties

Belief: No

Cache

B

(assuming backend
not overloaded)

95

P
99

 [m
s]

Hit Ratio [%]

100

1
90 100

Most hit
ratios

Can We Use Caching to Reduce the P99?

5

1ms

90%

10%

Belief: No

Cache

B

(assuming backend
not overloaded)

But: latency is
 not a constant

50ms 100ms

90% 10%

100ms 95

P
99

 [m
s]

Hit Ratio [%]

100

1
90 100

Caching can reduce P99 request latency!

Effectiveness in Microsoft’s architecture?

Can We Use Caching to Reduce the P99?

6

B
5

B
1 B
6

B
8

Cache

 Use the Aggregation Cache as a “Load Balancer”!

1) Lower hit ratios, more
competition for cache space

Belief: No

(assuming backend
not overloaded)

Observations at Microsoft

2) Some backends are
temporarily overloaded

P
99

 L
at

en
cy

Load0 1

RobinHood Caching System

- Microsoft web architecture

- Partition aggregation cache by backend system

- Minimize request P99 by dynamically adjusting

partition sizes

RobinHood: Experimental Validation of
our “Caching for Tail Latency Idea”

7

Scalable in #backends,
#aggregation servers

Deployable on off-the-

shelf software stack

Challenges in Minimizing the Request P99

8

Use the Aggregation Cache as a “Load Balancer”!

How to
define
“load”?

1) High Load = High Query Rate

Challenges in Minimizing the Request P99

9

Use the Aggregation Cache as a “Load Balancer”!

How to
define
“load”?

2) High Load = High Query P99

User request

B
3

B
1 B
2

AC

100 queries
in parallel

Same P99 on all backends sufficient?

Challenges in Minimizing the Request P99

10

Use the Aggregation Cache as a “Load Balancer”!

How to
define
“load”?

3) High Load = High Query Latency (Different
Percentiles)

User requests

99.5%

B3 has high
query latency

B
3

0.5%

B
1 B
2

AC

Should we prioritize B3?

Challenges in Minimizing the Request P99

11

Use the Aggregation Cache as a “Load Balancer”!

How to
define
“load”?

Need a new definition of “load”

- Incorporate whether backend “causes”
high request P99

- Frequently recalculate load metric

12

Basic RobinHood Algorithm
Basic algorithm:

1. Sort all request latencies:

2. Determine who “blocked” P99 request

(= on critical path)

3. Allocate cache space to blocking backend

B1

B2

B3

B2 blocked

 Find the
backend “causing”
high request P99

Challenges:
- Not a single cause
- Sample Variance

P0 P100P99

13

P0 P100

Refined RobinHood Algorithm
Refined algorithm:

1. Sort all request latencies:

P99

2. X = { requests in P99 neighborhood }

3. Determine who “blocked” requests in X

(= on critical path)

4. Allocate in proportion to
 “request blocking count” (RBC) in X

B1

B2

B3

B2 blockedConsider a
“neighborhood” of

the P99

Challenges:
- Not a single cause
- Sample Variance

 Find the
backend “causing”
high request P99

14

Dynamic Reallocation with RobinHood

TimeΔ seconds Δ seconds

Record
request
latencies

Calculate
RBC
(steps 1 - 3)

Take 1% cache space
from every partition.
Reallocate in
proportion to RBC
(step 4)

Record
request
latencies

...

Per request:
- latency
- blocking backend

RobinHood Architecture

15

Aggregation
server

B1 B5 B20... ...

AC
RobinHood Controller

- not on request path

- lightweight python

- computes RBC

- runs allocation algorithm

- controls AC partitioning

RH-control

Aggregation Cache (AC)

- need support for

dynamic resizing

- e.g., off-the-shelf

memcached 1.5

Backends

RobinHood Architecture

16

Ag.
servers

B1 B5 B20... ...

AC AC

RH-control RH-control RH-control

AC

⇒ RH-control / AC

Distributed RobinHood:

Production system: 16-64 Ag. servers

... ...

Backends
- Based on local partition’s

allocation speed

- Transient differences

across ag. server

- Local decisions

RH-stats

- Local measurements- Pooled measurements
- Increase #tail data points

- Stream to/Pull from

central buffer (RH-stats)

- “Just a buffer” (15s state)

Δ = 5 seconds

Experimental Setup

17

Request
generator

MySQL
(I/O Bound)

Matrix Multiply
(CPU Bound)

K-V Store
(CPU Bound)

Replay production requests and queries

For 4 hours, at 200k queries/second

(max: ~500k queries / second)

32 GB cache size

16 threads, 8 Gbit/s network

Emulate query latency spikes

Ag.
servers

B1 B5 B20... ...

AC AC

RH-control RH-control RH-control

AC... ...

Backends

RH-stats

20 backends

up to 8 servers per backend

Evaluation Results: P99 Request Latency

18

RobinHood

[our proposal]

Balance query latencies
[Hyberbolic, ATC’17]

 (Improved P99-version)

MS Production System

[OneRF]

Minimize overall miss ratio

[Cliffhanger, NSDI’16]

Fairness between partitions

[FairRide, NSDI’16]

Evaluation Results: RBC Balance

19

RBC = request blocking count

Intuition: balanced ↔ no single bottleneck

Evaluation Results: RBC Balance

20

RBC = request blocking count

Intuition: balanced ↔ no single bottleneck

Conclusions

Yes! 5x reduction in peak latency, 10x fewer SLO violations.
Caches can be used as load balancers: “RBC load metric”.

Yes! Tested on off-the-shelf software statck. Works orthogonally
to existing load balancing and auto scaling techniques.

21

Feasibility in production systems?

Is it possible to use caches to improve the request P99?

No! There’s a lot to do, e.g., other types of workloads (Google, FB),
other types of systems (apply ideas to resource allocation, …).

Is this the optimal solution? End of this project?

Vision: near-optimal allocation based on performance modeling

