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Microsoft Web Architecture
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Goal: minimize 99-th percentile
request latency (P99)




What Causes High P99 Request Latency?

Based on xbox.com production trace from 3/2018.
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What Else Can We Do?
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Can We Use Caching to Reduce the P99?
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The Tall at Scale

“The caching layer does not directly address tail latency”

[ Existing caching systems do not attempt to reduce the P99 }

Instead focus on: overall miss ratio or fairness properties



Can We Use Caching to Reduce the P99?
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!
L\O/ Caching can reduce P99 request latency! }

[Effectiveness in Microsoft’s architecture? }




Can We Use Caching to Reduce the P99?

!

Cache

Belief: No

(assuming backend
not overloaded)

Observations at Microsoft
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1) Lower hit ratios, more
competition for cache space

2) Some backends are
temporarily overloaded

P99 Latency
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TO/ Use the Aggregation Cache as a “Load Balancer”! J




RobinHood: Experimental Validation of
our “Caching for Tail Latency Idea”

p
RobinHood Caching System

- Microsoft web architecture

- Partition aggregation cache by backend system

- Minimize request P99 by dynamically adjusting

partition sizes
g

Scalabje in #backends

#aggregation Servers




Challenges in Minimizing the Request P99

N/

U Use the Aggregation Cache as a “Load Balancer”!
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Challenges in Minimizing the Request P99
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U Use the Aggregation Cache as a “Load Balancer”!
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2) High Load = High Query P99
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[Same P99 on all backends sufficient? }




Challenges in Minimizing the Request P99
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U Use the Aggregation Cache as a “Load Balancer”!
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3) High Load = High Query Latency (Different
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Challenges in Minimizing the Request P99
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U Use the Aggregation Cache as a “Load Balancer”!
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Basic RobinHood Algorithm
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Basic algorithm:

1. Sortall request latencies:

PO P99  P100

2. Determine who “blocked” P99 request

(= on critical path)

B2 blocked

3. Allocate cache space to blocking backend
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Refined RobinHood Algorithm

(O Findthe
backend “causing”
\hlgh request P99/
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- Not asingle cause
- Sample Variance
N
N D
U Consider a
“neighborhood” of
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Refined algorithm:

1. Sortall request latencies:

PO P99  P100
2. X=

3. Determine who “blocked” requests in

(= on critical path)

Y2 B2 blocked

4. Allocate in proportion to
“request blocking count” (RBC) in
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Dynamic Reallocation with RobinHood

Take 1% cache space
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RobinHood Architecture

Aggregation Cache (AC)
- need support for
dynamic resizing
i - e.g., off-the-shelf
memcached 1.5

RH-control

Aggregation
server AC

RobinHood Controller
- not onrequest path
- lightweight python
- computes RBC
- runs allocation algorithm
- controls AC partitioning

Backends
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RobinHood Architecture

Production system: 16-64 Ag. servers

= RH-control / AC

Distributed RobinHood:

-  Pocdtthessamemaereists
Ag. RH-control RH-control RH-control - Increase #tail data points
SErvers - Stream to/Pull from
central buffer (RH-stats)
- “Just a buffer” (15s state)
- Local decisions
Backends

- Based on local partition’s
allocation speed

- Transient differences

A =5 seconds across ag. server
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Experimental Setup

Request Replay production requests and queries
enerator .
J For 4 hours, at 200k queries/second
(max: ~500k queries / second)
32 GB cachessize
16 threads, 8 Gbit/s network
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up to 8 servers per backend
Emulate query latency spikes
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Evaluation Results: P99 Request Latency
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Evaluation Results: RBC Balance

RBC = request blocking count

{ Intuition: balanced < no single bottleneck }
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Evaluation Results: RBC Balance

RBC = request blocking count

{ Intuition: balanced < no single bottleneck }
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Conclusions

[Is it possible to use caches to improve the request P99? }

Yes! 5x reduction in peak latency, 10x fewer SLO violations.
Caches can be used as load balancers: “RBC load metric”.

[Feasibility in production systems? }

Yes! Tested on off-the-shelf software statck. Works orthogonally
to existing load balancing and auto scaling techniques.

{Is this the optimal solution? End of this project? }

No! There's a lot to do, e.g., other types of workloads (Google, FB),
other types of systems (apply ideas to resource allocation, ...).

Vision: near-optimal allocation based on performance modeling
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