RobinHood: Tail Latency-Aware Caching
In Large Web Services

Daniel S. Berger, CMU
Benjamin Berg, CMU
Timothy Zhu, PennState
Siddhartha Sen, Microsoft Research
Mor Harchol-Balter, CMU

To appear at USENIX OSDI (October 2018).

Red Hat Colloquium, 9/5/18, . . .
Hariri Institute for Computing. Carnegie Mellon University

Microsoft Web Architecture

User request

‘

Aggregation
server

7 1 \ N

Backend queries Request must

wait for last
query!

Adudie| 31sanbay

Py
)
Q
o
=)
=)
@
>
Q

Goal: minimize 99-th percentile
request latency (P99)

What Causes High P99 Request Latency?

Based on xbox.com production trace from 3/2018.

User request

‘

Aggregation »
server

Backend queries

Auto-scaling for
backend systems?

Adu33e| 1sonbay

>
EE = Backend
o > 1 o 5
Z —
o ~~6 :
S ; already included here

(@)

06 12 18
Hour of the Day 2

What Else Can We Do?

User request

‘

Aggregation 2 n X
server Cache 3

-

M

Backend querles i

T

)

L

Normalized
Query P99 Latency

sl

Backend

06 12 18 00
Hour of the Day

NN .
() Can we use this

Aggregation Cache
Shared among queries
to all backends

\

cache to reduce P99
request latency?

Can We Use Caching to Reduce the P99?

Belief: No | 9o%T Y ettt
Y |
(assuming backend Cache |1ms @ ol
not overloaded) % Most hit :
i 10% 8_7 ratios |
1‘ ; ; I _l
B 100ms 90 95 | 100
~ Hit Ratio [%]

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

The Tall at Scale

“The caching layer does not directly address tail latency”

[Existing caching systems do not attempt to reduce the P99 }

Instead focus on: overall miss ratio or fairness properties

Can We Use Caching to Reduce the P99?

Belief: No ¢9o%T &
100
(assuming backend Cache |[1ms g
not overloaded) ~
L 10% 8
1 - ; : —_—
B 100ms 90 95 100
Hit Ratio [%]
90% /\1 0%
But: latency is 50ms 100ms

not a constant

!
L\O/ Caching can reduce P99 request latency! }

[Effectiveness in Microsoft’s architecture? }

Can We Use Caching to Reduce the P99?

!

Cache

Belief: No

(assuming backend
not overloaded)

Observations at Microsoft

N
o

Normalized
o

Query P99 Latency

e

—1

(@)

5
~ ¢

pr—

06

12

18
Hour of the Day

Backend

1) Lower hit ratios, more
competition for cache space

2) Some backends are
temporarily overloaded

P99 Latency

o

Load

TO/ Use the Aggregation Cache as a “Load Balancer”! J

RobinHood: Experimental Validation of
our “Caching for Tail Latency Idea”

p
RobinHood Caching System

- Microsoft web architecture

- Partition aggregation cache by backend system

- Minimize request P99 by dynamically adjusting

partition sizes
g

Scalabje in #backends

#aggregation Servers

Challenges in Minimizing the Request P99

N/

U Use the Aggregation Cache as a “Load Balancer”!

" Howto) 1) High Load = High Query Rate

define

({4 ”?
9 load” y

—
o
S

o

N

o
1

©
N
ol

Normalized Query Rate
o
3

o
o
S

BackendlId

D
o

N
(]

N
o

Normalized P99 Latency

o
1

10 15 20
Backend-ID

—_
(@)]

Challenges in Minimizing the Request P99

N %

U Use the Aggregation Cache as a “Load Balancer”!

define
“load”?

-

4 How to A

)

2) High Load = High Query P99

User request

100 queries

/ in parallel
AC

— N w

[Same P99 on all backends sufficient? }

Challenges in Minimizing the Request P99

N %

U Use the Aggregation Cache as a “Load Balancer”!

define
“load”?

-

4 How to A

)

3) High Load = High Query Latency (Different

Percentiles)

User requests
99.5% 0.5%

B3 has high
AC query latency

[Should we prioritize 837

10

Challenges in Minimizing the Request P99

N %

U Use the Aggregation Cache as a “Load Balancer”!

define
“load”?

_

4 How to A

)

Need a new definition of “load”

- Incorporate whether backend “causes”
high request P99

J Backend
= e |

5
NV e ———~ ~~ 6

|

06 12 18 00
Hour of the Day

1

Normalized
Query P99 Latency
o S

- Frequently recalculate load metric

11

Basic RobinHood Algorithm

") Find the
backend “causing

)

\hlgh request P99/

\

-
Challenges:

- Not asingle caus
- Sample Variance

~

€

Basic algorithm:

1. Sortall request latencies:

PO P99 P100

2. Determine who “blocked” P99 request

(= on critical path)

B2 blocked

3. Allocate cache space to blocking backend

12

Refined RobinHood Algorithm

(O Findthe
backend “causing”
\hlgh request P99/
4 R
Challenges:
- Not asingle cause
- Sample Variance
N
N D
U Consider a
“neighborhood” of
9 the P99 y

Refined algorithm:

1. Sortall request latencies:

PO P99 P100
2. X=

3. Determine who “blocked” requests in

(= on critical path)

Y2 B2 blocked

4. Allocate in proportion to
“request blocking count” (RBC) in

13

Dynamic Reallocation with RobinHood

Take 1% cache space
Record Calculate ° P
from every partition.
request RBC el e
latencies (steps 1 - 3) eallocaten
proportion to RBC
(step 4)
Per request:
[latency]
blocking backend
Record
request
/ latencies
——1
Bl
[E B -

| | |
1 1 1
A seconds A seconds

Time

14

RobinHood Architecture

Aggregation Cache (AC)
- need support for
dynamic resizing
i - e.g., off-the-shelf
memcached 1.5

RH-control

Aggregation
server AC

RobinHood Controller
- not onrequest path
- lightweight python
- computes RBC
- runs allocation algorithm
- controls AC partitioning

Backends

15

RobinHood Architecture

Production system: 16-64 Ag. servers

= RH-control / AC

Distributed RobinHood:

- Pocdtthessamemaereists
Ag. RH-control RH-control RH-control - Increase #tail data points
SErvers - Stream to/Pull from
central buffer (RH-stats)
- “Just a buffer” (15s state)
- Local decisions
Backends

- Based on local partition’s
allocation speed

- Transient differences

A =5 seconds across ag. server

16

Experimental Setup

Request Replay production requests and queries
enerator .
J For 4 hours, at 200k queries/second
(max: ~500k queries / second)
32 GB cachessize
16 threads, 8 Gbit/s network
RH-control RH-control RH-control
Ag. 20 backends
servers
up to 8 servers per backend
Emulate query latency spikes
?300
Backends =
5 200
MySQL Matrix Multiply K-V Store 3
(10 Bound) (CPUBound) (CPU Bound) S ool ﬁﬂke”d
Gz; 1/4 L— 8
5 — 5
% 50 100 150 6

Time [minutes]

Evaluation Results: P99 Request Latency

D 450 -

RobinHood % 300 -
[our proposal] g 158 A A 7 R AP S pG

MS Production System :28]
[OneRF] 150 + el — — — =i L e N

Minimize overall miss ratio

[Cliffhanger, NSDI’16]

450 -
300 - L
150 Hf— === === == == - L
450 -
300 -
150 -4 - =========~ SN

450
300
150 =
120

180 Time [min]

Fairness between partitions
[FairRide, NSDI'16]

Latency [ms] Latency [ms] Latency [ms]

Balance query latencies

[Hyberbolic, ATC’17]
(Improved P99-version)

Request P99 Request P99 Request P99 Request P99 Request P99

Latency [ms]

18

Evaluation Results: RBC Balance

RBC = request blocking count

{ Intuition: balanced < no single bottleneck }

Robin MS Hit . Balance
Fairness Latency

Hood Production Ratio

IREIRS ¥}

Sn
1568 1568 1568 1568 1568
Backend-ID

ulwog
awn Iy

Count [%]
o & 8

Request-
Blocking

19

Evaluation Results: RBC Balance

RBC = request blocking count

{ Intuition: balanced < no single bottleneck }

Balance
Latency

Robin MS Hit
Hood Production Ratio

1
H

HTTT Il
1568 1568 1568 1568 1568
Backend-ID

Fairness

—
-
o

ulwQg
swn 1y

o1
o o
|]

— =
e =

=il

Request-Blocking Count [%]

—h
a O (&)
o o O o o
| l | l

ulQog
swn v

swin 1wy

Conclusions

[Is it possible to use caches to improve the request P99? }

Yes! 5x reduction in peak latency, 10x fewer SLO violations.
Caches can be used as load balancers: “RBC load metric”.

[Feasibility in production systems? }

Yes! Tested on off-the-shelf software statck. Works orthogonally
to existing load balancing and auto scaling techniques.

{Is this the optimal solution? End of this project? }

No! There's a lot to do, e.g., other types of workloads (Google, FB),
other types of systems (apply ideas to resource allocation, ...).

Vision: near-optimal allocation based on performance modeling

21

