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Microsoft Web Architecture

1

Goal: minimize 99-th percentile 
request latency (P99) 
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User request

What Causes High P99 Request Latency?
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Better load 
balancing?
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Backend queries

Based on xbox.com production trace from 3/2018.
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What Else Can We Do?
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Cache

Aggregation Cache
Shared among queries

to all backends

    Can we use this 
cache to reduce P99 

request latency?

Backend queries



Can We Use Caching to Reduce the P99?
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Existing caching systems do not attempt to reduce the P99

“The caching layer does not directly address tail latency”
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Can We Use Caching to Reduce the P99?
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But: latency is
   not a constant
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Caching can reduce P99 request latency!

Effectiveness in Microsoft’s architecture?



Can We Use Caching to Reduce the P99?
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Cache

    Use the Aggregation Cache as a “Load Balancer”!

1) Lower hit ratios, more 
competition for cache space

Belief: No

(assuming backend 
not overloaded)

Observations at Microsoft

2) Some backends are 
temporarily overloaded
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RobinHood Caching System

- Microsoft web architecture

- Partition aggregation cache by backend system

- Minimize request P99 by dynamically adjusting 

partition sizes

RobinHood: Experimental Validation of 
our “Caching for Tail Latency Idea”
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Scalable in #backends, 
#aggregation servers

Deployable on off-the- 

shelf software stack



Challenges in Minimizing the Request P99
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Use the Aggregation Cache as a “Load Balancer”!

How to 
define
“load”?

1) High Load = High Query Rate



Challenges in Minimizing the Request P99
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Use the Aggregation Cache as a “Load Balancer”!

How to 
define
“load”?

2) High Load = High Query P99

User request
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AC

100 queries
in parallel

Same P99 on all backends sufficient?



Challenges in Minimizing the Request P99
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Use the Aggregation Cache as a “Load Balancer”!

How to 
define
“load”?

3) High Load = High Query Latency (Different 
Percentiles)

User requests

99.5%

B3 has high 
query latency
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Should we prioritize B3?



Challenges in Minimizing the Request P99
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Use the Aggregation Cache as a “Load Balancer”!

How to 
define
“load”?

Need a new definition of “load”

- Incorporate whether backend “causes” 
high request P99

- Frequently recalculate load metric
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Basic RobinHood Algorithm
Basic algorithm:

1. Sort all request latencies:

2. Determine who “blocked” P99 request

(= on critical path)

3. Allocate cache space to blocking backend

B1

B2

B3

B2 blocked

         Find the 
backend “causing” 
high request P99

Challenges:
- Not a single cause
- Sample Variance

P0 P100P99
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P0 P100

Refined RobinHood Algorithm
Refined algorithm:

1. Sort all request latencies:

P99

2. X = { requests in P99 neighborhood }

3. Determine who “blocked” requests in X

(= on critical path)

4. Allocate in proportion to 
  “request blocking count” (RBC) in X

B1

B2

B3

B2 blockedConsider a 
“neighborhood” of 

the P99

Challenges:
- Not a single cause
- Sample Variance

         Find the 
backend “causing” 
high request P99
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Dynamic Reallocation with RobinHood

TimeΔ seconds Δ seconds

Record
request 
latencies

Calculate 
RBC
(steps 1 - 3)

Take 1% cache space 
from every partition. 
Reallocate in 
proportion to RBC 
(step 4)

Record
request 
latencies

...

Per request:
- latency
- blocking backend



RobinHood Architecture
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Aggregation 
server

B1 B5 B20... ...

AC
RobinHood Controller

- not on request path

- lightweight python

- computes RBC

- runs allocation algorithm

- controls AC partitioning

RH-control

Aggregation Cache (AC)

- need support for

dynamic resizing

- e.g., off-the-shelf 

memcached 1.5

Backends



RobinHood Architecture
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Ag. 
servers

B1 B5 B20... ...

AC AC

RH-control RH-control RH-control

AC

⇒ RH-control / AC

Distributed RobinHood:

Production system: 16-64 Ag. servers

... ...

Backends
- Based on local partition’s 

allocation speed

- Transient differences 

across ag. server

- Local decisions

RH-stats

- Local measurements- Pooled measurements
- Increase #tail data points

- Stream to/Pull from 

central buffer (RH-stats)

- “Just a buffer” (15s state)

Δ = 5 seconds



Experimental Setup
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Request 
generator

MySQL
(I/O Bound)

Matrix Multiply
(CPU Bound)

K-V Store
(CPU Bound)

Replay production requests and queries

For 4 hours, at 200k queries/second

(max: ~500k queries / second)

32 GB cache size

16 threads, 8 Gbit/s network

Emulate query latency spikes

Ag. 
servers

B1 B5 B20... ...

AC AC

RH-control RH-control RH-control

AC... ...

Backends

RH-stats

20 backends

up to 8 servers per backend



Evaluation Results: P99 Request Latency
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RobinHood

[our proposal]

Balance query latencies
[Hyberbolic, ATC’17]

                (Improved P99-version)

MS Production System

[OneRF]

Minimize overall miss ratio

[Cliffhanger, NSDI’16]

Fairness between partitions

[FairRide, NSDI’16]



Evaluation Results: RBC Balance
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RBC = request blocking count

Intuition: balanced ↔ no single bottleneck



Evaluation Results: RBC Balance
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RBC = request blocking count

Intuition: balanced ↔ no single bottleneck



Conclusions

Yes! 5x reduction in peak latency, 10x fewer SLO violations.
Caches can be used as load balancers: “RBC load metric”.

Yes! Tested on off-the-shelf software statck. Works orthogonally 
to existing load balancing and auto scaling techniques.
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Feasibility in production systems?

Is it possible to use caches to improve the request P99?

No! There’s a lot to do, e.g., other types of workloads (Google, FB), 
other types of systems (apply ideas to resource allocation, …).

Is this the optimal solution? End of this project?

Vision: near-optimal allocation based on performance modeling


