Targets, Tools, and Drugs: Advances in Molecular Discovery at BU

April 4, 2017

Adrian Whitty

Associate Professor Chemistry CAS

Drugs and probes for highly challenging proteinprotein interaction (PPI) targets

Most disease modifying genes are not druggable by conventional means

Hopkins & Groom, (2002).

- Topology lack suitable sized cleft or pocket
- Polarity binding site too polar (or too hydrophobic)
- **Disorder** additional energetic barrier to ligand binding; difficult to employ structure-based approaches

OUR APPROACH: Non-canonical drug chemotypes

- High MW synthetic macrocycles
- Targeted covalent inhibitors
- Team approach (with Porco, Allen, Vajda labs, Brown/BU-CMD, et al.)

EXAMPLE: Synthetic Macrocycles for PPI targets

Vajda— <mark>—</mark> •	Computational assessment of target	Pro
Whitty	Clone & express target, develop assav	
Porco/	Design and make MC screening library	т
Brown/— CMD	Screen target, validate hits	P
	Obtain X-ray structures of bound hits	H
Allen-	Biological evaluation of hits	Rotata
Gilmore– <mark></mark>	Further optimization of compounds	From

Property ^a	Conventional drugs	Oral MC drugs
MW	≤500 ^b	600–1,200 °
clogP	≤5 ^b	−2 to 6 °
TPSA	≤140 A ^₂ ^d	≥0.23 x MW A ² ^e
PSA _{n.p.}	≤140 A ^₂ ^d	≤140 A² °
HBD	≤5 ^b	≤12 °
HBA	≤10 ^{<i>b</i>}	12–16 °
Rotatable Bonds	≤10 ^d	≤15 °

From Villar et al., Nat. Chem. Bio. (2014)

OPPORTUNITY: We are keen to collaborate with BU investigators who seek to inhibit challenging PPI targets

Beyond HTS: BU-CMD Strategies for Focused Molecular Discovery

Lauren Brown

Assistant Director | Center For Molecular Discovery Research Assistant Professor | Chemistry, CAS

Center for Molecular Discovery: A Small Molecule Resource for Biomedical Research

Faculty:

John Porco (Director), Lauren Brown (Asst. Director), Karen Allen, Aaron Beeler, Scott Schaus, Adrian Whitty, Sandor Vajda, Arturo Vegas

Staff:

Strategies for Discovery Beyond High-Throughput Screening: Focused Subset Generation

Carmela Abraham

Professor

Biochemistry, Medicine, and Pharmacology & Experimental Therapeutics MED

Neuroprotection in Alzheimer's disease (1)

Reducing the levels of the neurotoxic Amyloid beta protein (Abeta)

- The Abeta peptide is toxic to neurons and their synapses
- High throughput screen (HTS) to reduce Abeta identified compound Y
- Y analogs, such as Y10, inhibit the receptor tyrosine kinase cKit
- Inhibitors of a down stream effector also inhibit Abeta production
- Efforts are under way to optimize Abeta lowering compounds in close collaboration with Drs. Porco, Brown and Camara

Neuroprotection in Alzheimer's disease (2)

Increasing the levels of the neuroprotective and cognition enhancer protein Klotho

- Klotho is a large protein hormone that is essential for the function of most organs, including the brain
- Our group found that Klotho is low in the aged brain, is protective against Abeta and glutamate excitotoxicity in vitro, and Abeta in vivo
- Klotho also improves remyelination in a mouse model of MS
- Two HTS are being conducted to identify compounds that enhance Klotho expression using a novel coincidence reporter

Klotho overexpression improves cognitive deficits and ameliorates synaptic hippocampal dysfunction in the J20 model without affecting Abeta levels

A new company is born; Klogene

Collaborative Research in the Beeler Lab

Aaron Beeler

Assistant Professor Chemistry CAS

BRG @ BU

HOME

PUBLICATIONS

MEMBERS

NEWS

AVAILABLE PROBES PHOTOS

MORE... CONTACT

BEELER RESEARCH GROUP @ BU

RESEARCH

Tweets by @BeelerGroupBU

🔁 Beeler Group BU Retweeted

@ZurichChemist Did the course last year and it

was a great decision to do so.

EdX class in medicinal chemistry chemjobber.blogspot.com/2017/0 3/edx-cl... via @Chemjobber

Beeler Group BU Retweeted

@angew chem Sad to hear 1994 #chemnobel

George A. Olah passed away yesterday chemistryviews.org/details/ezine/ ... @ChemistryViews @Wiley_Chemistry

The Beeler Research Group is truly multidisciplinary, combining organic chemistry, engineering, and biology to solve problems in medicinal chemistry. All of these elements are combined and directed toward significant problems in human health. The Beeler Group is addressing focused disease areas (e.g., schizophrenia, Parkinson's, cystic fibrosis), as well as project areas with broader impact potential (e.g., new methods for discovery of small molecules with anti-cancer properties).

Collaboration with David Harris @ BUMC Department of Biochemistry

LSF-targeted small molecules as hepatocellular carcinoma chemotherapeutics

Scott E Schaus Department of Chemistry

> Ulla Hansen Department of Biology

Clinical relevance of LSF in hepatocellular carcinoma

Boston University Office of the Vice President and Associate Provost for Research

s 20 to to 7, 835₽

Schaus, Hansen & Sarkar. J Am Cancer Res 2012, 269.

In vivo Tumor Reduction

2 mg/kg I.P. 2 weeks, treat on 3rd day followed by 2 weeks no treatment

Structure-Aided Inhibitor Design

Karen N. Allen

Professor Chemistry CAS

Targeting a Novel Signaling Interface in Metastasis

Mikel Garcia-Marcos

Assistant Professor Biochemistry MED

High-throughput screen for "good" inhibitor molecules: *From 1,000 to 200,000 compounds*

Hui Feng, MD, PhD

Assistant Professor of Pharmacology and Medicine Department of Pharmacology and Experimental Therapeutics

Can Novel Cancer Therapeutics be Identified through Combined Genetic and Chemical Efforts?

Our Strategies

DLST inactivation impairs T-cell leukemogenesis

Viability Hit # 36.6 1 150**-**2 51.4 3 20.8 4 12.4 5 8.4 6 30.3 1.3 7 100-8 49.1 10.9 9 4.5 10 11 9 12 5.2 50-13 61 22.8 14 24.5 15 31.8 16 17 47.5 18 8.6 Ω 19.7 19

Searching for DLST inhibitors

Boston University Office of the Vice President and Associate Provost for Research **Collaboration with Dr. John Porco's group**

BOSTON UNIVERSIT

Viability (%)

Searching for DLST inhibitors

Boston University Office of the Vice President and Associate Provost for Research Collaboration with Dr. John Porco's group

Searching for DLST inhibitors

Boston University Office of the Vice President and Associate Provost for Research Collaboration with Dr. John Porco's group

Tsuneya Ikezu

Professor Neurology and Pharmacology & Experimental Therapeutics MED

Neurology Director | Laboratory of Molecular NeuroTherapeutics Member | BU Alzheimer's Disease Center

TREM2 activation reporter system

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

ITIM signaling

receptors

FcyRIIB

Siglecs

SIRPa

cellsurface

innercell

JAN UARY 10, 2013

VOL. 368 NO. 2

VAV

actin

reorganization

5000-

4000-

2000-

1000

0

250 500

750 1000 1250 1500 1750

Time (sec)

Variant of TREM2 Associated with the Risk of Alzheimer's Disease

Thorlakur Jonsson, Ph.D., Hreinn Stefansson, Ph.D., Stacy Steinberg Ph.D., Ingileif Jonsdottir, Ph.D., Palmi V. Jonsson, M.D., Jon Snaedal, M.D., Sigurbjorn Bjornsson, M.D., Johanna Huttenlocher, B.S., Allan I. Levey, M.D., Ph.D., James J. Lah, M.D., Ph.D., Dan Rujescu, M.D., Harald Hampel, M.D., Ina Giegling, Ph.D., Ole A. Andreassen, M.D., Ph.D., Knut Engedal, M.D., Ph.D., Ingun Ulstein, M.D., Ph.D., Srdjan Djurovic, Ph.D., Carla Ibrahim-Verbaas, M.D., Albert Hofman, M.D., Ph.D., M. Arfan Ikram, M.D., Ph.D., Cornelia M van Duijn, Ph.D., Unnur Thorsteinsdottir, Ph.D., Augustine Kong, Ph.D., and Kari Stefansson, M.D., Ph.D.

ITAM signaling

receptors

Fc₇RI

FcyRIII

common γ chain

TREM2

CR3

SIRP_{B1}

DAP12

phagocytosis

migration

Funded by Massachusetts Neuroscience Consortium. **BrightFocus Foundation**

SRC

kinas

+

1

+

5

10 20

TREM2-TYROBP

 α TREM2 Ab (µg/ml)

"M.tb has been studying us longer than we have been studying it" Kyu Rhee

Igor Kramnik

Associate Professor Medicine | MED National Emerging Infectious Diseases Laboratory

Boston University National Emerging Infectious Diseases Laboratories

Genetic and Pharmacological Control of the Inflammatory Damage Caused by Tuberculosis and Other Infections

hours

The sst1/Ipr1 pathway controls stress response in macrophages. Unresolved stress leads to tissue necrosis in SUSCEPTIBLE hosts

Goals: to identify compounds that boost macrophage stress resilience to increase bacterial killing and mitigate the inflammatory damage;

Methods: novel assays based on gene expression patterns in relevant primary cells (macrophages) from susceptible individuals (mouse and humans)

Progress: in collaboration with the Porco and Beeler labs identified a novel rocaglate that acts in synergy with low doses of IFN-gamma to activate autophagy and suppress inflammation, but does not compromise host

resistance to intracellular bacteria in vitro and in vivo;

Plans: to continue the development of assays for compounds that

- 1. synergize with IFN-gamma;
- 2. correct hyperinflammatory phenotype in SUSCEPTIBLE hosts;
- 3. Identify inflammatory diseases that benefit from those compounds.

James S. Panek

Samour Family Professor in Organic Chemistry CAS

Reaction Development: Heteroatom Directed Reductive Coupling Bin Cai (BU), Professor Jie Wu (NUS) and Ryan Evans (Princeton)

Convergent Synthesis of Novel Muramyl Dipeptide Analogs

The effects of MDP are biphasic: at 10 μ g/ml (MDP-low), MDP activates the inflammatory process, while a dose of 100 μ g/ml or higher (MDP-high) dampens the process by inhibiting the NFkB-mediated cytokine response. Analogs of MDP were prepared through a convergent strategy involving the synthesis of two unique carbohydrate fragments, using the peptide coupling reagents, EDCI and HOAt. Analogs improved MDP function and P.g-induced activities. A new signaling pathway is proposed for TNF- α induction activated after exposing macrophages to both P.g and high concentrations of MDP.

Evidence highlighting a high dose MDPdependent signaling pathway which activates JNKs, induces AP1, up-regulates A20 expression, restricts NOD2, inhibits NF κ B, and consequently, reduces *P.g*-induced TNF- α production in mouse macrophages (inflammation).

B. Cai, J.S. Panek & S. Amar J. Med. Chem. 2016, 59(14), 6878. N.S Burres et. al. J, Antibiotics, 1995, 380.

John Connor

Associate Professor Microbiology | MED Investigator | NEIDL

Small Molecule Probes of Virus Function

Range of Microcephaly Severity

Baby with Typical Head Size

Baby with Microcephaly

Baby with Severe Microcephaly

With Snyder Beler, Porco

With Brown, Schaus, Porco

Tests To Find Molecules That **Stop Viruses From Working** We Have Found Molecules That Keep Viruses From Making Copies of Themselves