Research on Tap: Medicine in the Molecular Era: Single Cell Sequencing

October 1, 2018

DoM Single Cell Sequencing Core Facility

Yuriy Alekseyev, PhD

Director, Single Cell Sequencing Core Director, Microarray and Sequencing Resource

Research Associate Professor, Department of Pathology and Laboratory Medicine

Recent Revolutionary Changes in Science and Medicine Driven by Technology

Revolution 1: Genomics

2003 Completion of the Human Genome Sequencing Project (\$2.7B)
2007 Craig Venter's genome sequenced by Sanger sequencing (\$10M)
2007 James Watson's genome sequenced by 454 technology (\$2M)
2014 Illumina announces their new instrument HiSeqX capable of sequencing whole genome for less than \$1000

2015 100,000 Genome project launched focusing on rare disease and cancer 2017 Illumina announces new instrument series NovaSeq capable of sequencing 48 genomes in less than 40h under \$1000 per genome

Revolution 2: Single Cell Genomics

Revolution in Molecular Biology: Total RNA minimal input for RNA-seq drops from ug amounts to 10-30 pg

Development of methods for capturing Single Cells

Why Single Cell Genomics ?

Current Leader in Single Cell Sequencing technology: 10x Genomics

DoM Single Cell Sequencing Core Services:

Help with tissue dissociation

Single Cell Library Preparation (10x Genomics, Illumina/biorad ddSeq) Coming soon: Manual plate-based single cell library preparation (Celseq2, NEB)

Sequencing (Microarray and Sequencing Resource)

Data Analysis

Boston University Office of the Vice President and Associate Provost for Research

http://www.bumc.bu.edu/singlecell http://www.bumc.bu.edu/microarray

The Team:

16+ Color Flow Cytometry with Multivariate Computational Analysis: Tools to Reveal Biomarkers and Mechanisms of Disease

Jennifer E. Snyder-Cappione, PhD

Assistant Professor, Department of Microbiology Director, Flow Cytometry Core Facility Boston University School of Medicine

Research Interest: Immune Cell Alterations in Chronic Conditions

infections, autoimmunity, cancer

- How do these expression patterns:

(1) vary with different immune cell subsets and chronic diseases?

(2) track with function?

Developed a 16-color flow panel to measure IR signatures on several immune cell subsets from one sample *Cytometry A.* 91(2):175-179, 2017

Ongoing Projects

(1) Mechanisms of age-induced inflammation +/- aviremic HIV infection

Rahm Gummuluru Ph.D., Nina Lin M.D., Manish Sagar M.D.

(2) Role of frailty, NSCLC on immune aging of older individuals

Rawad Elias, M.D. UCONN

<u>How can we</u>:
(1) Analyze these enormous datasets?
(1) Define the impact when conditions collide?

<u>CITRUS reveals the cell signature that stratifies</u> <u>aviremic HIV+ subjects from controls</u>

PLS-DA: Divergent 'Inflamm-aging' +/- HIV

BUMC Flow Core: Advances in Single Cell Analysis

opt-SNE: Anna Belkina, M.D. Ph.D.

20+ parameter phenotyping

indexed single cell sorting

Proteomic + Transcriptomic Sample Processing

computational analysis with Single Cell Core

scRNAseq data

Lung Cell Fate Trajectories Profiled by scRNA-Seq Time Series

Darrell N. Kotton, MD

David C. Seldin Professor of Medicine Center for Regenerative Medicine

CENTER FOR REGENERATIVE MEDICINE

Time series data reveals differentiation and maturation of Alveolar epithelial cells from sorted NKX2-1+ progenitors Day15 Day31 Top Differentially CHIR, KGF+DCI+Y **NKX2-1 SFTPC** NAPSA **Expressed Genes** NPC2 SFTPB LPCAT1 CLDN18 HMGB3 **CEBPD** Wn **CEACAM6** NAPSA 15+ B3GNT7 17 21 PRSS1 25 PGC 29 15-CXCL2 31

BOSTON UNIVERSITY

Thanks!

- CReM
- Kotton Lab
- **Killian Hurley**
- Nacho Caballero
- Collaborators: Ziv Bar-Joseph Lab

Epithelial Progenitor Heterogeneity in Lung Development

Laertis Ikonomou

Assistant Professor Center for Regenerative Medicine, Boston University and Boston Medical Center

Research on Tap: Medicine in the Molecular Era: Single Cell Sequencing

- Nkx2-1⁺ lung and thyroid primordial progenitors arise as small clusters of cells* within the anterior foregut endoderm (AFE).
- Important intermediate cells in development and regenerative medicine (pluripotent stem cell directed differentiation): In vivo progenitors are "gold standard" for evaluating in vitro derived progenitor.

679 genes x 9 samples

Population RNA-Seq

Boston University Office of the Vice President and Associate Provost for Research

985 genes x 6 samples

Characterizing Immune Heterogeneity Associated with Lung Cancer Premalignancy

Joshua Campbell

Assistant Professor Dept. of Medicine, BU School of Medicine

Squamous Lung Carcinogenesis

Normal

Squamous metaplasia

Moderate dysplasia

Carcinoma in situ

Only a subset of airway premalignant lesions – progress to CIS/tumor

> Many airway premalignant lesions will regress without intervention

Keith, R. L. & Miller, Y.E. *Nat. Rev. Clin. Oncol.* 2013 Breuer et al, *Clin Cancer Res.*, 2005 van Boerdonk, *AJRCCM*, 2015

Cellular diversity in the (regenerating) adult lung

Jason Rock, PhD

Associate Professor Department of Medicine/CReM, BUSM

Adult lungs are complex – ~40 cell types ~400 million alveoli

Increased lung volume, weight, and number of alveoli

Single cell sequencing identifies subsets of myeloid cells in the regenerating lung

Ongoing efforts to characterize epithelial cells, fibroblasts, endothelial cells and other leukocytes

Statistical Analyses of Single Cell Transcript with MAST

Masanao Yajima

Associate Professor of Practice Department of Mathematics and Statistics, CAS

Challenges of Single Cell Genomics : Biological, Technical and Statistical

- Technical issues
 - Unwanted cell-to-cell variability
 - Assay failure (e.g. due to cell capture, etc)
 - Batch effects
- Bi-modality
 - A gene can be off/on in a cell
 - Standard statistical models might not work
- Large datasets and complex designs
 - thousands of genes in thousands of cells with complex designs.
 - Computation matters.

CDR vs PCA

MAST: A unified computational framework *Genome Biology* (2015)

Differential Expression

MAST: A unified computational framework Genome Biology (2015)

- Generalized linear Model-based Analysis for Single-cell Transcriptomics
 - Support for multiplexed-qPCR, NanoString, and scRNA-seq
 - Thresholding and filtering methodology
 - Semi-continuous model for estimation and inference
 - Gene set enrichment analysis
 - Implemented in Single Cell Toolkit (SCKT) (Jenkins et.al)

MSSP – A Statistical Hub

- MS in Statistical Practice (42 students)
 - Practice Centric Data Science Program
 - Statistical Consulting (FREE)
 - 1. One and done
 - 2. Limited Duration (10~20h student time)
 - 3. Collaboration
 - Supervised by a PhD student supervised by faculties
- Always looking for ways to help you with your research.

http://sites.bu.edu/mssp-consulting/

Gene set enrichment

Interactive single cell RNA-Seq analysis with the Single Cell Toolkit (SCTK)

W. Evan Johnson

Associate Professor, Division of Computational Biomedicine Department of Medicine

Single Cell Toolkit v0.3.9

Upload Data Summary and Filtering

ring DR & Clustering

g Batch Correction Differenti

Identification of Precursor Heterogeneity in the Neocortex Using Single Cell Transcriptomics

Tarik Haydar, PhD

Professor Department of Anatomy and Neurobiology, BU-Med

15hrs

pTbr2-Flpe + pFabp7-FNF-Cre + pCAG-LNL-GFP Research on Tap: How does receipt of positional cues induce diversification?

How does receipt of positional cues induce diversification?

Cynthia Bradham

Associate Professor Biology Department, CAS/Boston University

We discovered multiple ectoder paceues via an RNA-seq-based screen

Piacentino, Ramachandran, and Bradham 2015 Development

Cue reception is required for induction of PMC subsets

What is the network for cue-mediated PMC diversification?

Molecular phenotyping of endothelial cells and fibroblasts in the fibrotic tissues

Maria Trojanowska, PhD

Professor Arthritis Center/Medicine

Rheumatology: M. Trojanowska, R. Simms, L. Stawski Computational Medicine: Evan Johnson

The scleroderma triad of intermediate pathophenotypes

Manifestations of vascular disease in scleroderma

Nailfold capillaries

Occluded digital artery

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION

		HC1	HC2	SSc1	SSc2
SFRP4	secreted frizzled-related protein 4	1.88619046	2.49608294	4.86950151	4.37886
CXCL12	C-X-C motif chemokine ligand 12	5.15950334	4.97193875	5.76993783	5.994522
VCAM1	vascular cell adhesion molecule 1	2.85353398	2.55931188	3.56332813	3.89626
ADAM12	ADAM metallopeptidase domain 12	0.34322201	0.33721108	0.93444935	0.88185
SPP1	secreted phosphoprotein 1	1.64887725	2.8974006	6.25373394	4.75726
CADM1	cell adhesion molecule 1	0.8044578	0.93123805	1.78734588	1.42739
IGFBP3	insulin like growth factor binding protein 3	3.39512996	3.85548056	5.37660439	4.58603
TNC	tenascin C	2.35770427	3.03301895	5.7374457	4.26543
POSTN	periostin	7.4116745	4.27434881	9.3419971	9.83264
CDH11	cadherin 11	4.21114805	3.58645274	4.81902883	4.63696
IGFBP2	insulin like growth factor binding protein 2	1.4172434	1.17192603	1.83500454	2.46775
SCG2	secretogranin II	0.66848945	0.41519596	0.98612653	1.40574
FAS	Fas cell surface death receptor	4.36620056	3.822436	4.68753486	4.982094
NTM	neurotrimir 2.892535	1.79562491	1.58247125	2.29585545	2.04108
FGF2	fibroblast growth factor 2 (basic)	4.64249067	4.44607799	6.27050248	5.06218
ACTA2	actin, alpha 2, smooth muscle, aorta	4.25165869	3.28369984	5.14545828	4.4785
TIMP1	TIMP metallopeptidase inhibitor 1	8.70388254	8.82581803	9.30833448	9.00414
COL6A3	collagen type VI alpha 3 chain	4.70340404	4.15270593	4.95181376	6.14089
CTHRC1	collagen triple helix repeat containing 1	4.83892116	4.23735161	5.04052281	5.16975
TPM2	tropomyosin 2 (beta)	5.70441195	5.44340121	7.41761541	6.04154
NID2	nidogen 2 (osteonidogen)	2.65198552	2.55478584	2.83485827	3.34573
COL5A2	collagen, type V, alpha 2	1.03889487	1.14042395	1.26406247	1.6592
MYLK	myosin light chain kinase	2.29904875	1.76381163	3.0589322	2.31304
COL6A2	collagen, type VI, alpha 2	6.42827388	5.85159098	6.50367918	6.64540

Research on Tap: Medicine in the Molecular Era: Single Cell Sequencing

Fibrosis ARC: X. Varelas, W. Lu, M. Layne, M. Trojanowska, A. Bujor, J. Browning, K. Ravid, M. Kukuruzinska, P. Trackman, S. Monti

Purpose: To identify common and tissue specific factors in organ fibrosis

PDGFR β + cells are increased in various fibrotic tissues

UNIVERSI

Single Cell RNA Sequencing (scRNAseq) Reveals A Novel Hepatic Disease Signature In ATTR Amyloidosis

George J. Murphy, PhD

Associate Professor Department of Medicine, Division of Hematology-Oncology Co-Director BU and BMC Center for Regenerative Medicine (CReM)

Single cell RNA sequencing (scRNAseq) of corrected vs. uncorrected syngeneic iPSC-derived HLCs reveals a novel hepatic disease signature.

Single cell RNA sequencing (scRNAseq) of corrected vs. uncorrected syngeneic iPSC-derived HLCs reveals a novel hepatic disease signature.

Boston University Office of the Vice President and Associate Provost for Research

BOSTON UNIVERSITY