Microbiome Systems Biology for Human and Environmental Health

October 6, 2016

<u>Pre-Affinity Research Collaborative (ARC)</u> Microbiome Systems Biology for Human and Environmental Health *Co-directors: Drs. Daniel Segrè and Evan Johnson*

Faculty participants across Charles River & Medical Campuses

3 min presentations

Karen Allen

Professor Department of Chemistry College of Arts & Sciences

Enzyme Profiling for Functional Discovery

Rama Bansil

Professor Department of Physics College of Arts & Sciences

Motility and colonization of *Helicobacter* in stomach mucosa

Rama Bansil

Physics Dept.

Current Focus:

- Motility across a gel or viscoelastic medium.
- Impact of helical shape and flagella distribution on motility and colonization?
- Chemotaxis in mucus: microfluidic geometries

Interest in Microbiome at BU:

- Access to stomach bacteria. Clinical isolates.
- Collaborate on broader issues of colonization in stomach or other mucosa

Adhesion to mucus

Pamela Templer

Associate Professor Department of Biology College of Arts & Sciences

Plant-Microbial Interactions in Natural and Managed Ecosystems

Climate Change

Urbanization

Reduced snowpack and increased soil freezing

- reduce water uptake & forest carbon storage
- increase N movement to waterways due to root damage and reduced N uptake by trees
- N losses offset by reductions in soil microbial biomass and exoenzyme activity

Plant-microbe interactions affected by climate change across seasons.

Atmospheric nitrogen deposition

- 4-times greater in Boston than rural areas
- Variation driven by ammonia fertilizer and vehicle emissions

CO₂ fluxes from soils

- 2-times greater in Boston than rural areas
- 77% CO₂ produced from fossil fuel combustion
- Fate of CO₂: vegetation vs. atmosphere

Need understanding of human activities & biological fluxes of carbon and nitrogen in cities.

Adrien Finzi

Professor Department of Biology College of Arts & Sciences

Microbes Gate Keep the Global Carbon Cycle & Regulate Climate

Source: https://commons.wikimedia.org/wiki/File:Arctic_Sea_Ice_Minimum_Comparison.png

Grand Challenges

Scaling: systems biology to global biogeochemical cycles microns to soil profiles to soil C inventories seconds to years to millenia

Separating microbial signals [e.g., decomposition] from noise [e.g., diversity]

Horacio Frydman

Associate Professor Department of Biology College of Arts & Sciences and National Infectious Diseases Laboratories (NEIDL)

Insect probiotics: are Wolbachia in mosquitos good for human health?

Volbachia V18 nuclei

Frydman Lab, unpublished

Colaborator

Support at the NEIDL

• Ron Corley

Eva Helmerhorst

Associate Professor Department of Molecular & Cell Biology School of Dental Medicine

Gluten-Degrading Bacteria and Enzymes: Novel Therapeutics for Celiac Disease

Only approach is gluten-free diet:

Difficult to maintain Inadequate ingredient labeling Cross contamination

Therapeutic strategy:

Elimination of immunogenic epitopes by exogenous enzymes with correct cleavage specificities

Dental plaque

Gluten-limited agar

◆ Food-grade enzyme candidates

Novel natural therapeutics for CD

Probiotics:

Safety/efficacy assessment *in vivo* in mouse models for digestion and CD

Enzymes:

Dietary supplement Structural modifications to increase retention/activity in GI tract

> R01 AI087803, K02 AI101067 BU Ignition Award, CTSI Award

Trevor Siggers

Assistant Professor Department of Biology College of Arts & Sciences

Siggers lab (Dept. of Biology)

triiodothyronine (T₃) hyroid hormone recepto (TR)

RXR

RXR partner

Microbes & Inflammation

Metabolism & Inflammation

calcitriol itamin D recepto

(VDB

VDR RAR α, β, γ

CAR TR α, β

PPAR α, β/δ, γ LXR α, β FXR SXR/PXR RXR α, β, γ

Engineering Macrophages

Lee Wetzler

Professor Department of Microbiology School of Medicine

Vaccines, Adjuvants and the Microbiome Lee Wetzler, M.D. Not Much is Known,

Chris Gill

Associate Professor Department of Global Health School of Public Health

C. Gill: Southern Africa Mother Infant Pertussis Study

- Mother infant pair seen at 1 week post partum then every 2-3 weeks to 14 weeks
- At each visit, NP swabs obtained from both irrespective of symptoms
- Result: ~10,000 maternal and 10,000 infant NP swabs obtained for longitudinal analyses
- Proposal: Characterize the evolution of infant respiratory microbiome with stratification by:
 - Maternal HIV status (positive vs. negative)
 - Infant vaccination status (pre/post)

Kirill Korolev

Assistant Professor Department of Physics College of Arts & Sciences

Microbiome: from Data to Models

Models with physical constraints

Wally Fulweiler

Associate Professor Departments of Earth & Environment and Biology College of Arts & Sciences

Marine Microbiomes – Linking Ecosystem Function to Microbial Community Dynamics

Jennifer Talbot

Assistant Professor Department of Biology College of Arts & Sciences

Systems Biology of the Earth Microbiome

-omics

Jennifer Talbot

Boston University Biology

Field systems

Experimental systems

Fungi

B Fvs B

F Fvs F

Mono-saccharides

() - <u>``</u> +

Long-chain fatty acids Hydrocarbons

Bacteria

0-2 days

15-20 days

Ecosystem function

2-5 days

alone bacteria alone fungi

Pankaj Mehta

Associate Professor Department Physics College of Arts & Sciences

Two approaches to uncovering ecological principles

Top-down systems approach– understand theoretical models, in particular role of ecological selection (niche) and ecological drift (neutral), selection using ideas from statistical mechanics

Bottom-up approach-infer how species interactions to try to understand community assembly from microbiome data (ideas from ML/Statistics)

Evan Johnson

Associate Professor Departments of Medicine and Biostatistics School of Medicine

Daniel Segre

Professor Departments of Biology and Physics College of Arts & Sciences; Department of Biomedical Engineering College of Engineering; and Bioinformatics Program

From intracellular wiring to cell and community behavior

A "virtual Petri dish"

Metabolism mediates competition and cooperation

Can models scale up to natural communities?

Engineering task-specific communities

What is needed?

Network integration

Ecological building blocks and real-time detection

Multiscale models

