Materials Science and Engineering: The Science of Stuff

February 28, 2017

Ultrafast Optics and its Applications

Michelle Sander Assistant Professor

Electrical & Computer Engineering Materials Science & Engineering BU Photonics Center

Ultrafast Optics and Femtosecond Laser Development

Mid-Infrared Vibrational Photothermal Spectroscopy and Imaging: Chemical/Biological Characterization

- High sensitive near-IR detection
- Low optical powers ~ 1mW

Advancing High Energy Density Batteries Through Controlled Mass Transport

Emily Ryan Assistant Professor

Mechanical Engineering Materials Science & Engineering

High Energy Density Lithium Batteries

Challenges

- Interfacial Stability
- Material properties
- Long-term performance
 - Degradation with cycling

Images from:

https://www.extremetech.com/mobile/217191-new-lithium-air-batterycould-drive-huge-performance-gains

https://mitechnews.com/new-products-contracts/u-m-researchers-studydendrites-suspected-causing-smart-phone-battery-fires-create-batteriesstore-10-times-energy/

Computational Modeling of Dendrite Growth at the Anode-Electrolyte Interface

- Lagrangian particle based model of dendrite growth
 - Reactive transport: diffusion, convection, surface reactions
- Investigating driving forces for growth and morphology changes
- Design novel electrolytes to suppress growth
 - Controlled mass transport through electrolyte
 - Materials informatics for materials discovery

Suppressing Dendrite Growth

- Reduce mixing near the electrode-electrolyte interface by inducing anisotropic transport properties
 - Maintains battery performance
 - Reduces dendrite growth
- Anisotropy

$$\frac{D_{yy}}{D_{xx}} = 10$$

Designing Electrolytes to Suppress Dendrite Growth

 Controlling the transport properties in the electrolyte can control the growth rate and morphology of dendrites

Anisotropic

Isotropic

How can we translate these studies to enhanced battery performance?

- New electrolyte materials
 - Anisotropic transport properties
 - Low viscosity
 - Stable under battery operating conditions
- Structured electrolytes
 - Hybrid liquid-solid electrolyte
 - Force anisotropic transport
- Separation membranes
- New Materials
 - Materials Informatics

Organic Electronic Materials

Malika Jeffries-EL Associate Professor

Chemistry

Why develop organic electronics?

Organic electronic materials

Example: Tunable Organic Semiconductors

- Facilitates selective tuning of the HOMO and LUMO levels.
 - Wide band gap materials for use in OLEDS
 - Narrow band gap materials for use in OSCs

UNIVERSITY

Blue light emitting diodes

UNIVERSITY

Biomimetic Growth Factor Delivery Strategies to Improve Mechanical Functionality of Engineered Cartilage

Michael Albro Assistant Professor

Mechanical Engineering

Osteoarthritis and Cartilage Tissue Engineering

----->

[Howardluksmd.com]

- Osteoarthritis (OA) is a debilitating condition involving the degeneration of articular cartilage.
 - 33.6% of adults of age 65+
 - Medical costs ~\$180 billion per year in U.S.

Cartilage Tissue Engineering Techniques

TGF-β supplemented medium

Boston University Office of the Vice President and Associate Provost for Research

BOSTON UNIVERSITY

Uptake of TGF-β into Engineered Cartilage

- Media supplemented TGF-β exhibits limited penetration in engineered cartilage.
- TGF-β gradients give rise to large heterogeneities in tissue growth.

mm

TGF-β Delivery in Native Cartilage

- Can biomimetic conjugation of latent TGF-β to hydrogel scaffolds improve uniformity of engineered tissue growth?
- Can we implement materials science strategies to achieve efficient growth factor conjugation?

Thank you

Two-Dimensional Materials and Heterostructures

Xi Ling Assistant Professor

Chemistry Materials Science & Engineering

Two-dimensional (2D) materials

Flexible Transparent Diversely functional

2D van der Waals heterostructures

In Our Lab

Boston University Office of the Vice President and Associate Provost for Research

UNIVERSITY

Computational Materials Science

Sahar Sharifzadeh Assistant Professor

Electrical & Computer Engineering Materials Science & Engineering

Why Computation?

- Making materials and testing them in devices is difficult, expensive, and time-consuming
- Infinite number of possibilities as to new material chemistry

Using computation, we can speed up the material discovery process

- Calculate and understand material properties
- Screen databases of materials for desired properties
- Predict new materials with optimal or emergent properties

Computational Materials Science

 As we reduce the size of devices, their properties are governed by the atomic scale → need to understand how electrons and atoms behave.

Example: New Materials for Solar Energy Conversion

Solar energy conversion in organic materials: inspired by nature!

PROCESS OF PHOTOSYNTHESIS

- 1. Light absorption
- 2. Energy transfer

Reimers et al, BB A- Bioenergetics (2016)

First-Principles Computation to Understand Energy Transfer

- How does an electron behave after light absorption?
- How do atomic vibrations (due to finite temperature) influence energy transfer

With new understanding gained, we can design new organic materials

Nanomanufacturing where Top-Down Meets Bottom-Up

Keith A. Brown Assistant Professor

Mechanical Engineering Materials Science & Engineering Physics Moorman-Simon Interdisciplinary Career Development Professor

What Makes a Material Strong?

Rao, *et al.* Composite Structures **2007**, 77, 288. Technical Association of the Pulp and Paper Industry *Aluminum Standards and Data 2006 Metric SI*, The Aluminum Association **Boston University** Office of the Vice President and Associate Provost for Research

Natural Materials Derive Performance from Hierarchical Structure from Molecules to Millimeters

Wegst, et al., Nature Mater. 2015, 14, 23.

Nanomanufacturing where Top-Down meets Bottom-Up

Integrated circuit: www.nisenet.org Bamboo: Matt Gibson

Advanced Quantum Dot Synthesis for Biosensing and Biomedical Imaging

Allison Dennis Assistant Professor

Biomedical Engineering

Semiconductor Nanocrystal Quantum Dots

courtesy of Invitrogen and IEEE

'Giant' Nanocrystal Quantum Dots (g-NQDs)

Thick, epitaxial shells enable bandgap tuning and tailoring of the absorption cross-section.

/					
	Composition	Emission range	Bandgap alignment		
	CdSe/ZnS	500 – 600 nm	Type I		
	CdSe/CdS*	550 – 650 nm	Quasi Type II		
	ZnSe/InP*	500 – 900 nm	Inverted Type I		
	InP/ZnS	500 – 700 nm	Type I		
	InP/ZnSe*	500 – 700 nm	Type I		
	InP/CdS*	650 – 1000 nm	Type II		
		CE0 1100 mm	Tune II		
	InP/CdSe*	000 – 1100 nm	туре п		

brightness, stability, and biocompatibility for bioimaging.

Different core and shell semiconductor compositions for different applications—tailoring optoelectronic properties and reducing cadmium-based nanotoxicity.

Ratiometric Biosensors for Label-Free Detection of Hormones

Optimizing Voltage Response for Imaging Action Potentials in Neurons

Molecular Phenotyping of Breast Cancers Using Cadmium-Free NIR Emitters

Single Molecule Magnets

Linda H. Doerrer Associate Professor

Chemistry

Requirements in Single Chain Magnet Design

- Magnetically Isolated Chain
- Paramagnetic Ground State
- Axial Magnetic Anisotropy

Modification of Backbone

Incorporating Different Metals

Bridges to form chains

Single Chain Magnet Behavior

Separating the Chains Changes the Magnetism !

Atomic Membranes

Scott Bunch Assistant Professor

Mechanical Engineering

2D Materials beyond Graphene

Atomic Membrane Nanomechanics

<u>Theme 1:</u>

Graphene and MoS₂ Mechanics and Adhesion

S.P. Koenig et al. Nature Nanotechnology, 6, 543–546 (2011)

J.S. Bunch and Martin L. Dunn Solid State Communications (review article), **152**, 1359–1364 (2012)

X. Liu et al. Nano Letters, 13, 2309-2313 (2013)

N. Boddeti et al. Journal of Applied Mechanics, **80**, 040909 (2013)

- N. Boddeti et al. Nano Letters, **13**, 6216-6221 (2013)
- X. Liu et al. in preparation. (2016)
- D. Lloyd et al. Nano Letters, 16 (9), 5836-5841 (2016)

Theme 2:

Gas and Ion Transport through Porous Graphene

S.P. Koenig et al., Nature Nanotechnology, **7**, 728-732 (2012)

L. Drahushuk et al., ACS Nano **10**, 786-795, (2015)

L. Wang et al., Nature Nanotechnology, **10**, 785-790 (2015)

L. Cantley et al., Science, under consideration (2016)

MoS₂ ion transport

Functionalizing the Pore site

Michael Strano (MIT)

High Strain MoS₂

MoS₂

Electrical Transport

MoS₂ and Graphene Pressure Sensors and Microphones

Mechanical Resonance

Harold Park Anna Swan David Campbell Bennet Goldberg

Bowls for Bacteria

Alice White Kamil Ekinci Shyamsunder Erramilli

Lanthanide Binding Tags (LBTs): New Chemical Tools for Molecular Visualization

Karen Allen Professor

Chemistry

Allen Lab: Lanthanide Binding Tags (LBTs): New Chemical Tools for Molecular Visualization

Luminescence probes for tagging and LRET

Paramagnetic NMR probes

MRI Contrast Agents

Affinities for lanthanides

Angew. Chem. Int. Ed. 2004, 43, 3682 - 3685

anthanide		Radius	KD
S	elected)	(A)	(nM)
	La	1.1	4000
	Ce	1.07	1200
	Nd	1.05	300
	Eu	1.01	78
	Gd	1	93
	Tb	0.98	57
	Dy	0.97	66
	Er	0.945	85
	Yb	0.925	117
	Lu	0.92	140

[Ubiquitin]

NMR

Crystallography

Bound Ln can provide pseudo contact shifts and dipolar couplings (sufficient order in probe)

amino acid residues

J. Am. Chem. Soc. 2007, 129, 7114-7120

J Biomol NMR. 2015 , 63, 275-82

New Applications in X-ray Fluorescence Microscopy

L. Easthon & K. O'Toole, unpublished

Materials for Electrochemical Energy Conversion

Srikanth Gopalan Associate Professor

Mechanical Engineering Materials Science & Engineering

Overarching Themes

- Materials: Conducting Oxides Ionic and Electronic Transport
- Experimental Materials synthesis, design and fabrication of devices – fuel cells, membrane-based reactive separation of gases, sensors etc.
- Modeling/Theory Materials thermodynamics and kinetics, transport phenomena

Conducting Ceramics: Complex Oxides

Manipulating Transport by Point Defect Chemistry

Point defects in materials are central to mass and charge transport

Unlike electronic, magnetic, and optical applications where the goal is to minimize point defects, in solid state ionics, presence of point defects are critical to transport of ions

Devices: Solid Oxide Fuel Cells (SOFCs)

SOFCs: Transport and Electrode Reaction Kinetics

SOFCs: Computational Thermodynamics

S Darvish, S Gopalan, Y Zhong Journal of Power Sources 336, 351-359

Boston University Office of the Vice President and Assoc

MIEC Membranes: Hydrogen Generation and CO₂ Segregation

MIEC Membranes: Hydrogen Generation and CO₂ Segregation

Electrochimica Acta 56 (20), 6989-6996

Boston University Office of the Vice President and Associate Provost for Research

density (A/cm² 0.9

0.6

0.0

Current 0.3

Porous substrate

 $(1/\sqrt{P_{O_2}^{permeate}} - 1/\sqrt{P_{O_2}^{food}})/10^9$

Acknowledgments

