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We have learned that the one dimensional Schrödinger equation,

curvature of y at x = -
2 m
ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 µ kinetic energy at x µ y at x,

implies the oscillatory nature of wavefunctions in allowed regions, their divergent behavior in 
forbidden regions, and that, when combined with the Born recipe for finding probability densities 
from wavefunctions, these behaviors account for the quantization of energies whenever a particle is 
confined by forbidden regions of infinite spatial extent. This is all we need to understand the 
properties of any one dimensional quantum system.

We have already studied the simplest one dimensional system, a particle of mass m confined by 
infinite potential walls to the region 0 § x § L. There are an infinite number of possible quadratically 
spaced energies,

E j =
j 2 p2 Ñ2
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2 m L2 =

j 2 p2Hh ê 2 pL2
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2 m L2 =

j 2 h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 m L2 ,

indexed by j = 1, 2, …, the number of loops in the wavefunction

y j =
è!!!!!!!!!2 ê L  sinH j p x ê LL.

Here we will explore the effect of distorting the potential energy in various ways. We will do this 
using the curvature form of the Schrödinger equation to find the possible energies and 
wavefunctions. 

In calculations with the Schrödinger equation it is very convenient to work in units of 
energy and length that are natural to the problem at hand. The implementation of the 
stepwise solution to Schrödinger equation that we use assumes that units of energy and 
length are chosen so that the proportionality constant, 2 m êÑ2, is equal to one. In terms of 
the energies of the infinite potential well case, this means that

2 m
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8 m L2
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h2 ,

and so that the lowest infinite potential well energy value in these dimensionless units is 
h2 ê H8 m L2L = Hp ê LL2. For example, in these dimensionless energy units an infinite well of 
width L = 6 will have lowest (zero point) energy Hp ê 6L2 = 0.27416. This means that to 
express energies in multiples of the zero point energy of an infinite potential well, 
h2 ê H8 m L2L, we need to divide the dimensionless energies by Hp ê 6L2.



à Effect of wall "softness"

What happens if the potential walls confining the particle are not infinite? Here are three different 
L = 6 wide wells and their corresponding second lowest energy wavefunctions. One well is the 
infinitely deep well, for which the energy of the second lowest state is 4, in units of the infinite well 
zero point energy, h2 ê H8 m L2L; one well is 12 units deep, and the energy of the second lowest state is 
lowered to 2.79 units; and the third well is 3 units deep, and the energy of its second lowest state is 
lowered further to 1.95 units. The successive lowering of the energy value is due to the increasing 
penetration of the wavefunction into the wall of the potential, and hence its increasing loop length, as 
shown in the figure below.
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Three different L = 6 wide wells and their corresponding second lowest energy wavefunctions and energy value. Energies are units 
of the infinite well zero point energy, h2 ê H8 m L2L = h2 ê H32 m L. One well and it wavefunction (thin solid lines) is the infinitely deep 
well, for which the energy of the second lowest state is 4 (thin horizontal line); one well is 12 units deep (thick solid lines), and the 
energy of the second lowest state is lowered to 2.79; and the third well only 3 units deep (thick dashed lines), and the energy of its 
second lowest state is lowered further to 1.95 units. Vertical lines at x = ≤3 mark the classical turning point on the wavefunction 
figure. 

The shallower the potential well, the greater the penetration of the wavefunction into the forbidden 
regions, and so the greater the leakage of probability density out of the potential wells. We can 
quantify this leakage by calculating the fraction of the wavefunction in the allowed region. The 
results are 75% for the shallowest well, 96% for the intermediate depth well, and 100% for the 
infinite depth well. From this we achieve the intuition that the the shallower the well, the "softer" its 
walls.
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à Semi-infinite potential well

We have seen that the smaller are potential walls are, the softer they are in the sense that 
wavefunctions penetrate more deeply. What if one potential wall is not infinitely high? Here is an 
example of such a potential
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Semi-infinite potential of width L = 2 (thick line).. The two horizontal thin lines are the energies, 0.75 and 2.86, of the two bound 
states of the potential. Energies are units of the infinite well zero point energy, h2 ê H8 m L2L = h2 ê H32 m L.

The potential energy is infinite for x < 0. This means there can be no wavefunction penetration into 
this forbidden region. The potential energy is 4, in units of the infinite well zero point energy, 
h2 ê H8 m L2L = h2 ê H32 m L, for 2 < x § ¶, and so energies are quantized in this potential for energies 
less that its height. These energies are 0.75 and 2.86.

What would these energies be if the potential were infinitely high for 2 < x § ¶? Answer: 
1 and 4.

Here are the corresponding wavefunctions.
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Wavefunctions of the lowest tow energy states of the semi-infinite well potential.  The vertical line at x = 2 marks the right classical 
turning point.
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Explain why the wavefunction with two loops penetrates more into the right forbidden 
region of the potential indicated by the dotted line.

Explain why are there only two quantized energies of the potential indicated by the dotted 
line. Hint: Sketch the solution to the Schrödinger equation with energy just below the right 
hand potential energy.

Explain whether the a particle can exist for energies greater than 4, that is, for energies 
above the potential energy of the right forbidden region.

à Energy continuum

For energies above the potential energy of the right forbidden region, the wavefunction is oscillatory 
for all value x > 0 and so the particle can have any energy above 4. Here is the wavefunction for 
energy 5 units, that is, 1 unit above the potential energy for x > 2.
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Wavefunction of the energy continuum of the semi-infinite potential, with energy 5. Energy is units of the infinite well zero point 
energy, h2 ê H8 m L2L = h2 ê H32 m L. The vertical line at x = 2 marks the right classical turning point.

Sketch how this wavefunction would change if its energy were 9 units, that is, 5 units 
above the potential energy for x > 2.

Sketch how this wavefunction would change if its energy were 4.25 units, that is, 0.25 
units above the potential energy for x > 2.

Because amy energy is possible above 4, the potential energy at x > 2, these energies form an energy 
continuum.

What is the lowest energy (in zero point energy units) that can be absorbed if the particle is 
initial in its lowest energy state? Answer 2.11.

What is the next lowest energy (in zero point energy units) that can be absorbed if the 
particle is initial in its lowest energy state? Answer 3.25.
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Explain whether it is possible for the system to absorb energy 3.26?

Explain whether the system has an ionization energy.

à Field ionization

A scanning tunneling microscope (STM) works by distorting the potential energy confining electrons 
to atoms, molecules, or the surface of a solid. Here is an example modification of the semi-infinite 
potential above.
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Distorted semi-infinite potential (thick solid line) and unmodified potential (thick dashed line). The two horizontal thin dashed lines 
are the energies, 0.75 and 2.86, of the unmodified potential. The lowest horizontal thin solid line the energy of a wavefunction 
possible for the modified potential but not for the unmodified potential. The highest horizontal thin line is a possible energy of both 
potentials. Energies are units of the infinite well zero point energy, h2 ê H8 m L2L = h2 ê H32 m L. 

The effect of the modification is to make the right forbidden region only 1 unit wide. Here is the 
effect on the wavefunctions of the lowest energy wavefunction.
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Lowest energy wavefunction of a semi infinite well before (thin line) and after (thick line) modification by an applied potential. The 
vertical lines at x = 2 and x = 3 mark the finite width forbidden region of the modified potential.

And here is the effect on the wavefunctions of the second lowest energy wavefunction.
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Second lowest energy wavefunction of a semi infinite well before (thin line) and after (thick line) modification by an applied 
potential. The vertical lines at x = 2 and x = 3 mark the finite width forbidden region of the modified potential.

In both cases the wavefunction has "leaked" out of the potential well into the exterior allowed region. 
The wavefunction of the lowest energy state is now only 96% confined and the wavefunction of the 
second energy state is now only 78% confined.

This effect of passing through a finite width forbidden region is called tunnelling and we say the 
potential has become permeable.

Another consequence of the potential being made permeable is that there is no longer quantization of 
energy, since there is no longer any confinement by two infinite forbidden regions. This means that 
there are now physically sensible solutions to the Schrödinger equation at every energy. As example, 
here is a solution at an energy 0.5 units above the second bound energy of the unmodified potential, 
together with the bound state wavefunction and its changed form in the modified potential.
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Wavefunction (thick line) of a semi-infinite well after modification by an applied potential at energy 0.5 units above the second 
bound state of the unmodified potential, together with the bound state wavefunction (thin line) and its changed form in the modified 
potential (thin dashed line). The vertical lines at x = 2 and x = 3 mark the finite width forbidden region of the modified potential.

The effect is that now the wavefunction is only 4% confined, that is, most of the wavefunction is 
now outside the original well.

It is a general feature of potentials that have been made permeable by external potentials that only 
near energies of bound states of the unmodified potential is there appreciable probability density in 
the originally bound region.
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