
Appendix 3, Rises and runs, slopes and sums: tools 
from calculus

Sometimes we will want to explore how a quantity changes as a condition is varied. Calculus was 
invented to do just this. We certainly do not need the full machinery of calculus, just a few of its key 
ideas and tools, described here. There are two different regimes, according to whether we are 
interested in a small change in conditions (in which case we use slopes) or a large change in 
conditions (in which case we use sums).

If you are not yet familiar with calculus, the ideas and tools presented here are all that you 
need (and a bit more!) to appreciate their application in general chemistry. They may even 
make your future study of calculus easier.

If you are already familiar with calculus, then the material here probably will be quite 
familiar, with one possible exception. The discussion of the natural logarithm emphasizes 
its definition in terms of the sum of small changes in a quantity divided by the value of the 
quantity at each point in its change. If you are like me, on first exposure you may not have 
appreciated that the natural logarithm arises as this special kind of sum, and so that it 
cannot be "derived" from something more fundamental. Indeed, it is for this reason that it 
comes up "naturally" in chemistry and so is quite accessible to us.

Slopes

If we are interested in the effect, „ f , on a property, f , of a small change, „ x, in conditions, we can 
evaluate this as the product of the rate at which f  changes when x is changed times the small change 
in x,

„ f = change in f due to small change „ x =
„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

 „ x .

The rate of change, „ f ê „ x, is the slope of the plot of f  versus x. It is called the derivative. If we 
have an expression for the dependence of f  on x, then it is easy to get an expression for the slope 
without having to make a plot of f  versus x. The process is called differentiation.

The key idea of differentiation is that slopes—rise over run—are computed in the limit that the run is 
tiny. Here is what this statement means in general terms. If x changes from x1 to x2, then the slope of 
the variation is defined in the usual way

D f
ÅÅÅÅÅÅÅÅÅÅÅ
Dx

=
f Hx2L - f Hx1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x1
.

To specify that the run, x2 - x1, is tiny, we write

x2 = x1 + „ x ,

and so

x2 - x1 = „ x ,

with the understanding that „ x is tiny. Using this last relation in the expression for the slope, we get



„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= lim
„xØ0

f Hx + „ xL - f HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x
,

where we have replace the specific value x1by the general value x. This is as the fundamental 
definition of slope for tiny runs. To see just what the definition means and how powerful it is, let's 
apply it to the several kinds of variations, f HxL, that arise in chemistry.

à Linear variation, f HxL = a x

The simplest example is a linear variations, a x. If we plot this we will get a straight line extending 
from the origin with slope a. Here is what we get using the definition of slope.

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
aHx + „ xL - a x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
a x + a „ x - a x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x
= a .

Just as we expect, the slope evaluates to a.

à Quadratic variation, f HxL = a x2

Here is what we get for a quadratic variation, a x2.

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
aHx + „ xL2 - a x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
a x2 + 2 a x „ x + aH„ xL2 - a x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x
= 2 a x + a „ x
= 2 a x .

In the last step, we use the fact that we are interested in values „x that are tiny ("infinitesimally 
small") and so that, in the numerator of the second to last line, the term a „ x is negligible compared 
to 2 a x. Here is a plot of f = 3 x2 and the slope, „ f ê „ x = 6 x at several points.
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Function 3 x2and its slope, 6 x, at x = 1.1 and x = 3. The straight lines are the slope of the function when it has the values indicated 
by the dots.

I find it almost magical that we can evaluate an analytical expression for the slope of the 
function—the line tangent to the plot of the function—at any point.

à General variation, f HxL = a xn

We can show in the same way that for positive integers n, the slope f HxL = a xn is

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= n a xn-1.

See if you can do this.

à Inverse linear variation, f HxL = a x-1

Here is the slope when a property is inversely proportional to a quantity x.

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= J a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x + „ x

-
a
ÅÅÅÅÅ
x

N í „ x

= J a x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx + „ xL x -

aHx + „ xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xHx + „ xL N í „ x

= J a x - a x - a „ x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2 - x „ x
N í „ x

= J -a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 - x „ x

N

= -
a

ÅÅÅÅÅÅÅÅ
x2 .

In the last step, we use the fact that we are interested in values „x that are tiny ("infinitesimally 
small") and so that, in the denominator of the second to last line, the term x „ x is negligible 
compared to x2. Here is a plot of f = 2 x-1 and the slope, „ f ê „ x = -2 x-2 at several points.
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Function 2 x-1and its slope, -2 x-2, at x = 1.1 and x = 3. The straight lines are the slope of the function when it has the values 
indicated by the dots.

à Inverse quadratic variation, f HxL = a x-2

Here is the slope when a property is inversely proportional to the square of a quantity x.

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
i
k
jjj a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx + „ xL2 -

a
ÅÅÅÅÅÅÅÅ
x2

y
{
zzzì „ x

=
i
k
jjjj

a x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx + „ xL2 x2

-
aHx + „ xL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2Hx + „ xL2

y
{
zzzzì „ x

=
i
k
jjj a x2 - a x2 - 2 a x „ x - a „ x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x4 + 2 x3 „ x + x2 „ x2

y
{
zzzì „ x

=
-2 a x - a „ x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x4 + 2 x3 „ x + x2 „ x2

= -
2 a
ÅÅÅÅÅÅÅÅÅÅ
x3 .

In the last step, we use the fact that we are interested in values „x that are tiny ("infinitesimally 
small") and so that, in the second to last line, in the numerator the term a „ x is negligible compared 
to 2 a x, and in the denominator the terms 2 x3 „ x + x2 „ x2are negligible compared to x4. Here is a 
plot of f = 3 x-2 and the slope, „ f ê „ x = -6 x-3 at several points.
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Function 3 x-2and its slope, -6 x-3, at x = 0.6 and x = 1.2. The straight lines are the slope of the function when it has the values 
indicated by the dots.

à General variation, f HxL = a x-n

We can show in the same way that for positive integers n, the slope of f HxL = a x-n is

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= -n a x-Hn+1L.

See if you can do this.

à Trigonometric variation, f HxL = sinHa xL

Here is the slope when a property is proportional to the sinHa xL .

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
sinHa x + a „ xL - sinHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
sinHa xL cosHa „ xL + cosHa xL sinHa dxL - sinHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
sinHa xL + cosHa xL a „ x - sinHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x
= a cosHa xL

Here we use the trigonometric identity sinHa + bL = sinHaL cosHbL + cosHaL sinHbL, and the fact that for x 
tiny, sinHxL = x and cosHxL = 1. Here is a plot of f = sinH2 xL and the slope, „ f ê „ x = 2 cosH2 xL at 
several points.
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Function sinH2 xL and its slope, 2 cosH2 xL, at x = 0.6 and x = 1.2. The straight lines are the slope of the function when it has the 
values indicated by the dots.

à Trigonometric variation, f HxL = cosHa xL

Here is the slope when a property is proportional to the cosHa xL .

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
f Hx + „ xL - f HxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
cosHa x + a „ xL - cosHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
cosHa xL cosHa „ xL - sinHa xL sinHa dxL - cosHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x

=
cosHa xL - sinHa xL a „ x - cosHa xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ x
= -a sinHa xL

Here we use the trigonometric identity cosHa + bL = cosHaL cosHbL - sinHaL sinHbL, and the fact that for 
x tiny, sinHxL = x and cosHxL = 1. Here is a plot of f = cosH3 xL and the slope, „ f ê „ x = -sinH3 xL at 
several points.
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Function cosH3 xL and its slope, -3 cosH3 xL, at x = 0.6 and x = 1.2. The straight lines are the slope of the function when it has the 
values indicated by the dots.
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Sums

Assume that a quantity represented by a function f  depends on a variable x. We are often interested 
to know the effect of a large change, Dx, on the value of f . Let's introduce the notation D f  for the 
effect of a large change in x on f HxL . A way to determine D f  is to sum up all of the small changes, 
„ f , that occur as x is changes throughout the large range Dx. This summing up is represented by the 
symbol Ÿ  (for Sum) as follows.

D f = change in f due to large change Dx = ‡
f HxL

f Hx+DxL

 „ f = f Hx + DxL - f HxL

The key idea is that the way to use this relation is to interpret the small changes, „ f , being summed 
to be the product of a slope, „ f ê „ x, and a small change in conditions, „ x, 

„ f =
„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

 „ x ,

and then to work backwards to see which function f HxL has „ f ê „ x as its slope. You may want to 
read the last sentence again. It really is the key to determining the cumulative effect of successive 
small changes.

Here is an example. In some chemical reactions a reactant, A, disappears at a rate proportional to the 
square of its concentration, @AD. We can express this as

„ @AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= -k @AD2 ,

where the minus sign takes care of the fact that the concentration decreases with time. Tis expression 
says that the small change in concentration, „ @AD, that occurs during the passage of the small amount 
of time, „ t, is proportional to the square of the concentration at the time of the change. Since [A] 
thereby changes as time passes, so to does the rate. We can rearrange this expression to 

-
„ @AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
@AD2 = k „ t .

In this form we can see how to sum the change in concentration that takes place over a large change 
in time, say from t = 0 to t. The sum on the right hand side is just k times the total elapsed time, 
kHt - 0L = k t. To evaluate the sum on the left hand side, we interpret it as 

„ f =
„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

 „ x Ø „ f =
„ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ @AD  „ @AD = -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
@AD2  „ @AD ,

That is, we interpret -1 ê @AD2 as the slope „ f ê „ @AD of an (as yet unknown) function of the 
concentration. That is, this interpretation means that what we need to know is which function of @AD 
has as derivative -1 ê @AD2. 

From our analysis of derivatives, we know the answer: -1 ê @AD2 is the derivative of 1 ê @AD. This 
means that f =1 ê @AD, and so the sum on the left hand side is

D f = f Hx + DxL - f HxL Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD at t
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD at t = 0

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@ADt
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0

.
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In this way we get an explicit expression for the cumulative change in -1 ê @AD2 as concentration 
changes continuously from @AD0 to @ADt. In this example the result is the expression

k t =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@ADt
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0

relating the concentration of A at any time t to its initial concentration.

This example illustrates the general procedure for doing sums. It is less systematic than getting 
expressions for slopes, that is, than evaluating derivatives. The key idea is always the same, to look 
at what is being summed in terms of a slope and then to figure out which function has that as its 
slope.

A remarkable special case: f HxL = lnHxL

How should we handle the sum

‡
f HxL

f Hx+DxL

 „ f = ‡
x

x+Dx

 
1
ÅÅÅÅÅ
x

 „ x ?

That is, what function has as its derivative

„ f
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
1
ÅÅÅÅÅ
x

?

Neither f HxL = xn nor f HxL = x-n, for positive integer n will do. This is a real puzzle. In fact, there is 
no analytic explicit functional form that has as its derivative 1 ê x. What do we do? What we do is to 
define the answer in terms of the sum. The sum is known as the natural logarithm,

lnHxL ª ‡
1

x
1
ÅÅÅÅÅ
x

 „ x .

with the understanding that x > 0. Such a definition is known as an integral representation of a 
function. 

Here is a plot that shows that the sum is indeed lnHxL.
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Function logHxL and its slope, 1 êx, at x = 0.7 and x = 2. The straight lines are the slope of the function when it has the values 
indicated by the dots.

The plot was constructed using the values of logHxL for the curve and the values 1 ê x for the slope. In 
this way we confirm graphically that the natural logarithm is a function defined in terms of a 
sum—what is called an integral representation.

But how do we compute such a sum? The answer is to compute it by breaking the sum up into 
pieces. If the pieces are large, our answer for the sum will not be very accurate. As we make the size 
of each piece smaller, by adding more pieces, the answer gets better quite quickly. We will see just 
how to do this during the discussion of work done by an expanding gas, but for now, let's realize that 
every time we press the logHxL button on our calculators, the calculator evaluates the sum for us to get 
the numerical values.

à Logarithmic properties of Ÿ
1

x
H1 êxL ‚ x

The place to begin is to recall the just what a logarithm is. The logarithm, y, of a number, x, to a 
base, b, is the power to which the base must be raised to equal the number,

x = by

Expressed differently,

logbHxL = y

In numerical calculations, we usually work with logarithms in the base b = 10, and often abbreviate 
log10HxL simply as logHxL, that is, without writing the value of the base.

Base of the natural logarithm: „

The first question that you may have about the natural logarithm is what is the base? We can 
determine this by noting that, from the definition of the logarithm, the logarithm to base b of the base 
b is always 1,

logbHbL = 1 ,

since b = b1. This means we can determine the numerical value of the base of the natural logarithm 
by finding the value of x for which the sum
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‡
1

x
1
ÅÅÅÅÅ
x

 „ x

is one. This number is called ‰ and has the value ‰ = 2.71828.

1 = ‡
1

‰
1
ÅÅÅÅÅ
x

 „ x

Numerical calculations with natural logarithms are conveniently done by expressing them in terms of 
base 10 logarithms. Here is how to do this. Any number can be written as

x = 10logHxL,

in terms of its base 10 logarithm. Taking the natural 1ogarithm of both sides, we get

lnHxL = ln@10logHxLD = logHxL lnH10L

Since lnH10L = 2.30259, this expression means that

lnHxL = 2.30259 logHxL

This is a very useful formula in numerical calculations with logarithms, and is worth memorizing.

Logarithmic properties of the natural logarithm

From the definition of a logarithm, two key properties follow:

logcHa bL = logcHaL + logcHbL ,

since clogc a clogc  b = clogc  a+logc  b, and

logcH1 ê aL = -logcHaL,

since 1 ê a = a-1. (These properties are true for any base, and so an unspecified base c is used in these 
relations.) From these properties, we can get the other properties of logarithms. For example, we can 
show that

logcHa ê bL = logcHaL + logcH1 êbL = logcHaL - logcHbL

by using the two key properties, and we can show that

logcHabL = b logcHaL

by interpreting ab as the product of a times itself b times, and then repeatedly using the relation for 
the logarithm of a product.

logcHabL = logcHa a … aL = logcHaL + logcHaL + ... + logcHaL = b logcHaL

These key properties are what we need to confirm that
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‡
1

x
1
ÅÅÅÅÅ
x

 „ x

is in fact a logarithm. That is, what we need to do is to show that the sum satisfies the two key 
properties of logarithms. The details given below are not at all essential to using our results, but 
should you want to follow along, they do show how powerful the basic ideas of "slopes and sums, 
rises and runs" that we have developed here are.

Natural logarithm of a product

Using the integral representation, the logarithm of a product is

lnHa bL ª ‡
1

a b
1
ÅÅÅÅÅ
x

 „ x .

We can break the sum up into the piece from 1 to a, and the piece from a to a b.

lnHa bL ª ‡
1

a
1
ÅÅÅÅÅ
x

 „ x + ‡
a

a b
1
ÅÅÅÅÅ
x

 „ x

The first piece is lnHaL, by our definition of the natural logarithm. This means what we have to do is 
to show that the second piece is lnHbL. We can do this by changing the scale from x to y = x ê a. This 
change means a small change in „ x is equivalent to a „ y, that x = a corresponds to y = 1, and that 
x = a b corresponds to y = b. With these values, we can write the second piece as

‡
a

a b
1
ÅÅÅÅÅ
x

 „ x = ‡
1

b
1

ÅÅÅÅÅÅÅÅÅÅÅ
a y

 a „ y = ‡
1

b
1

ÅÅÅÅÅÅÅ
y

„ y

The last sum is, by our definition, lnHbL and so we have shown that

lnHa bL = lnHaL + lnHbL

Natural logarithm of a reciprocal

Now let's consider the logarithm of an inverse,

lnH1 ê aL ª ‡
1

1êa
1
ÅÅÅÅÅ
x

 „ x .

The key step in working with this expression is to realize that if we carry out a sum in the opposite 
direction, the value of the sum changes sign. To see this, note that

‡
f Hx+DxL

f HxL

„ f = f HxL - f Hx + DxL = -@ f Hx + DxL - f HxLD = - ‡
f HxL

f Hx+DxL

 „ f

This means we can write

Appewndix 3, Rises and runs, slopes and sums: tools from calculus 397

Copyright © 2006 Dan Dill (dan@bu.edu). All rights reserved



‡
1

1êa
1
ÅÅÅÅÅ
x

 „ x = - ‡
1êa

1
1
ÅÅÅÅÅ
x

 „ x.

To rewrite the right hand side so the sum starts at 1 we can change the scale from x to y = a x. This 
change means a small change in „ x is equivalent to „ y ê a, that x = 1 ê a corresponds to y = 1, and 
that x = 1 corresponds to y = a. With these values, we can write

‡
1êa

1
1
ÅÅÅÅÅ
x

 „ x = ‡
1

a
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y ê a

 „ y êa = ‡
1

a
1
ÅÅÅÅÅÅ
y

 „ y .

The last sum is, by our definition, lnHaL and so we have shown that

lnH1 ê aL = ‡
1

1êa
1
ÅÅÅÅÅ
x

 „ x = - ‡
1êa

1
1
ÅÅÅÅÅ
x

 „ x = -logHaL.

à Postscript

I must confess that I did not appreciate at all just what the natural logarithm function was when I first 
learned calculus. I was not able to see the forest for the trees! It was not until I began teaching and so 
wanted to explain just where the natural logarithm comes from that I came to understand what we 
have seen here. I find the natural logarithm function quite remarkable. I hope these notes will be 
helpful in making easier your journey to understanding this amazing function.

Summary

Here is a summary of the results we have developed for slopes of different functions.

f HxL „ f ê „ x
a x a
a x2 2 a x

a xn, integer n > 0 n a xn-1

a lnHxL a x-1, x > 0
a x-2 -2 a x-3

a x-n, integer n > 1 -n a x-Hn+1L

sinHa xL a cosHa xL
cosHa xL -a sinHa xL

In these expressions, a is a constant. We have also introduced the notation that logHxL = log10HxL and 
lnHxL = log‰HxL, and derived the equivalence lnHxL = 2.30259 logHxL.
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