Hybrid AOs and polyatomic MOs CH101 Fall 2009 Boston University # Hybridized AO's account for central atom shape #### Central atom AO mixing: Hybrid AO's Unmixed AO's have the wrong central atom geometry the 90° angles in PH₃ and H₂S come from the overlap of the hydrogen 1s AO with the p AO of the phosphorus or sulfur ## An s and a p AO make two sp hybrid AO's 180° angle, for SN = 2 Two p's are unchanged on each atom two p orbitals are unchanged ### sp hybrids account for linear geometry 180° angle, for SN = 2 Two p's are unchanged on each atom ## An s and two p AO's make three sp² hybrid AO's 120° angle, for SN = 3 One p is unchanged on each atom ## sp² hybrids account for *trigonal planar geometry* 120° angle, for SN = 3 One p is unchanged on each atom ## An s and three p AO's make four sp³ hybrid AO's 109° angle, for SN = 4 sp³ hybrids account for *tetrahedral geometry* #### Examples CO_2 , carbon dioxide H_2CO , formaldehyde HCO_2^- , formate SO_2 , sulfur dioxide #### Polyatomic MO recipe - 1. Use the Lewis structure to get - the number of electron pairs - make hybrid AO's on each atom (except H) - 2. Sketch the σ framework and place pairs - in each bonding σ MO - in each nonbonding hybrid AO - 3. Sketch the π framework MO's, - mark as bonding, nonbonding, antibonding - place remaining pairs (Auf Bau) - get the π bond order #### σ framework - Hybridization of terminal atoms the same as their central atom - Terminal H never hybridized - One pair in each hybrid AO σ bonding MO - One pair in each non-bonded hybrid AO sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold ... sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold ... sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold 4 pairs of electrons. sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold 4 pairs of electrons. The remaining 4 pairs are in the ... $CO_2 \pi$ framework co=c #### π framework - Unused p AO's form *same number* of π *MO's* - Number of loops and AO overlap determine whether π MO is ... - bonding (π) - nonbonding (π^n) - antibonding (π^*) #### CO_2 π framework 4 pairs are in the (delocalized) π framework 2 pairs in π (bonding) and 2 pairs in π^n (nonbonding); bond order 2 ### H₂CO sp² σ framework 6 pairs in Lewis structure, 5 pairs in σ framework, and so 1 pair in (*localized*) π framework. ### H₂CO π framework 1 pair in (*localized*) π framework 1 pair in π (bonding); bond order 1 #### HCOO⁻ sp² σ framework 9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (*delocalized*) π framework. #### HCOO⁻ π framework 2 pairs in (*delocalized*) π framework 1 pair in π (bonding) and 1 pair in π^n (nonbonding); bond order 1 ### SO_2 sp² σ framework 9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (*delocalized*) π framework. ### SO_2 π framework 2 pairs in (*delocalized*) π framework 1 pair in π (bonding) and 1 pair in π^n (nonbonding); bond order 1 ### SO₂ correlation diagram #### Do these on your own HCOOH, formic acid $H_2C=CH-CH=CH_2$ NO_3^- , nitrate #### For each one, - Write the Lewis structure - Sketch the σ framework and assign its pairs - Sketch the π framework MO's, identify bonding, nonbonding, antibonding, and assign its pairs, and get the π bond order