

CH102 General Chemistry, Spring 2009

Friday, April 03, 2009 Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Strong acid example

 $\begin{aligned} \text{HA}(aq) + \text{H}_2\text{O}(I) & \rightarrow \text{H}_3\text{O}^+(aq) + \text{A}^-(aq) \\ & \textit{K}_a \text{ of HA is 1 x } 10^{+6}. \end{aligned}$ What is the pH and (HA) in 0.001 M HA? $(\text{H}_3\text{O}^+) = c_a = 0.001 \Rightarrow \text{pH} = 3.0$ $(\text{HA}) = \text{x} = c_a^2/\textit{K}_a = (0.001)^2/(1 \text{ x } 10^{+6}) = 1 \text{ x } 10^{-12} \text{ !!!}$

Friday, April 03, 2009

Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Weak acid (CPS lesson)

 $HA(aq) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$

	НА	H₃O ⁺	A-
Initial	C _a	10-7	0
Change	- X	+ x	+ x
Equilibrium	$c_a - x \approx c_a$	$10^{-7} + x \approx x$	х

 10^{-7} + x ≈ x because $K_a > K_w$

 $c_a - x \approx c_a$ because $1 > K_a$

 $(H_3O^+) = x = V(K_a c_a)$

Weak acid example

 $HA(aq) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$ K_a of HA is 1 x 10^{-7} . What is the pH of 0.001 M HA?

$$(H_3O^+) = v(K_a c_a) = v(1 \times 10^{-10}) = 1 \times 10^{-5}$$

pH = 5.0

Friday, April 03, 2009 Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Conjugate base (CPS lesson)

 $H_2O(I) + A^{-}(aq) \rightarrow HA(aq) + OH^{-}(aq)$

	A ⁻	НА	OH-
Initial	c_{b}	0	10-7
Change	- x	+ x	+ X
Equilibrium	$c_{\rm b} - x \approx c_{\rm b}$	х	$10^{-7} + x \approx x$

10⁻⁷ + x ≈ x because $K_b = K_w / K_b > K_w$ $c_b - x ≈ c_b$ because 1 > K_b (OH-) = x = $V(K_b c_b)$

Conjugate base example

 $H_2O(I) + A^-(aq) \rightarrow HA(aq) + OH^-(aq)$ K_a of HA is 1 x 10⁻⁷. What is the pH of 0.001 M NaA?

$$K_{\rm b} = K_{\rm w}/K_{\rm a} = 1 \times 10^{-7}$$
 (OH⁻) = $\nu(K_{\rm b} \, c_{\rm b}) = \nu(1 \times 10^{-10}) = 1 \times 10^{-5}$

$$pOH = 5.0 \rightarrow pH = 9.0$$

Friday, April 03, 2009

Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Weak acid + conjugate base

 $HA(aq) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$ $K_a \text{ of HA is } 1 \times 10^{-5}$

Equal volumes of 0.002 M HA and 0.01 M NaA are combined. What is the pH?

$$c_{\rm a}$$
 = 0.001 M, $c_{\rm b}$ = 0.005 M
(H₃O⁺) = x = $K_{\rm a}$ ($c_{\rm a}/c_{\rm b}$) = 2 x 10⁻⁶

Friday, April 03, 2009

pH = 6 - 0.3 = 5.7ht © 2009 Dan Dill | Department of Chemistry | Boston University

Conjugate base

 $H_2O(I) + A^{-}(aq) \rightarrow HA(aq) + OH^{-}(aq)$

	A ⁻	НА	OH-
Initial	c_{b}	0	10-7
Change	- X	+ x	+ x
Equilibrium	$c_{\rm b} - x \approx c_{\rm b}$	х	$10^{-7} + x \approx x$

10⁻⁷ + x ≈ x because
$$K_b = K_w / K_a > K_w$$

 $c_b - x ≈ c_b$ because 1 > K_b
(OH⁻) = x = $V(K_b c_b)$

Conjugate base example

 $H_2O(I) + A^-(aq) \rightarrow HA(aq) + OH^-(aq)$ K_a of HA is 1 x 10⁻⁷. What is the pH of 0.001 M NaA?

$$K_{\rm b} = K_{\rm w}/K_{\rm a} = 1 \times 10^{-7}$$

(OH-) = $V(K_{\rm b} \, C_{\rm b}) = V(1 \times 10^{-10}) = 1 \times 10^{-5}$

 $pOH = 5.0 \rightarrow pH = 9.0$

Friday, April 03, 2009 Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Weak acid + conjugate base = buffer

 $HA(aq) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$

	НА	H ₃ O ⁺	A ⁻
Initial	Ca	10-7	c_{b}
Change	- X	+ x	+ x
Equilibrium	$c_a - x \approx c_a$	$10^{-7} + x \approx x$	$c_{\rm b} + x \approx c_{\rm b}$

 $10^{-7} + x \approx x$ because $K_a > K_w$ $c_a - x \approx c_a$ and $c_b + x \approx c_b$ because $1 > K_a$ $(H_3O^+) = x = K_a (c_a/c_b)$

riday, April 03, 2009 Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Weak acid + conjugate base = buffer

 $HA(aq) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$ $K_{\rm a}$ of HA is 1 x 10⁻⁵

Equal volumes of 0.002 M HA and 0.01 M NaA are combined. What is the pH?

$$c_{\rm a}$$
 = 0.001 M, $c_{\rm b}$ = 0.005 M
(H₃O⁺) = x = $K_{\rm a}$ ($c_{\rm a}/c_{\rm b}$) = 2 x 10⁻⁶

pH = 6 - 0.3 = 5.7

Buffers resist change in pH

Added strong base (say, OH-) is gobbled up ... \downarrow HA(aq) + OH-(aq) \rightarrow H₂O(I) + \uparrow A-(aq) c_a lowered, c_b raised, c_a/c_b lowered

Added strong acid (say, HCI) is gobbled up ... $HCl(aq) + \downarrow A^{-}(aq) \rightarrow \uparrow HA(aq) + Cl^{-}(aq)$ $c_{\rm h}$ lowered, $c_{\rm a}$ raised, $c_{\rm a}/c_{\rm h}$ rasied

Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Add strong base to buffer

1 L buffer, $c_a = c_b = 1.00$ M, $K_a = 1 \times 10^{-5}$, **pH = 5.00** Add 100. mL of 0.100 M NaOH

> \downarrow HA(aq) + OH-(aq) \rightarrow H₂O(I) + \uparrow A-(aq) HA → 1.00 mol – 0.010 mol = **0.99 mol** $A^{-} \rightarrow 1.00 \text{ mol} + 0.100 \text{ mol} = 1.01 \text{ mol}$

 $c_a = 0.99 \text{ mol}/1.10 \text{ L}, c_b = 1.01 \text{ mol}/1.10 \text{ L}$ $c_a/c_b \to 0.99/1.01$, pH $\to 5.01$ (tiny change!)

Copyright © 2009 Dan Dill | Department of Chemistry | Boston University

Add strong acid to buffer

1 L buffer, $c_a = c_b = 1.00$ M, $K_a = 1 \times 10^{-5}$, **pH = 5.00** Add 100. mL of 0.100 M HCl

 $HCI(aq) + \downarrow A^{-}(aq) \rightarrow \uparrow HA(aq) + CI^{-}(aq)$

HA → 1.00 mol + 0.010 mol = 1.01 mol

 $A^{-} \rightarrow 1.00 \text{ mol} - 0.100 \text{ mol} = 0.99 \text{ mol}$

 $c_{\rm a}$ = 1.01 mol/1.10 L, $c_{\rm b}$ = 0.99 mol/1.10 L $c_a/c_b \to 1.01/0.99$, pH $\to 4.99$ (tiny change!)

Add strong acid/base to water

1 L of water, $K_a = 1 \times 10^{-14}$, **pH = 14.00** Add 100. mL of 0.100 M HCl $(H_3O^+) = 0.010 \text{ mol}/1.10 \text{ L} = 0.0091$

pH = 2.04 (huge change!)

Add 100. mL of 0.100 M NaOH $(OH^{-}) = 0.010 \text{ mol}/1.10 \text{ L} = 0.0091$ pOH = 2.04, pH = 11.96 (huge change!)

 $c_{\rm a}$ = 1.01 mol/1.10 L, $c_{\rm b}$ = 0.99 mol/1.10 L $c_{\rm a}/c_{\rm b} \rightarrow 1.01/0.99, \, {\rm pH} \rightarrow 4.99$

